Теория электрических цепей Закон Ома Второй закон Кирхгофа Резонанс напряжений Резонанс токов Коэффициент мощности Методы расчета сложных цепей Метод контурных токов Метод узловых потенциалов

Принцип наложения, метод наложения

Используя метод контурных токов, можно получить обобщенное уравнение по расчету любого i-го контурного тока. Сомножитель перед  имеет размерность Ом – 1, то есть уравнение будет иметь следующий вид:

.84

В общем случае это уравнение применимо для любого i-го контурного тока, однако, оно справедливо и для любого реального тока в ветви, так как всегда можно систему независимых контуров выбрать так, чтобы ток ветви численно равнялся контурному току. Если в уравнении (3.8) учесть, что контурная ЭДС есть сумма всех ЭДС контура, то, перегруппировав слагаемые таким образом, чтобы каждая ЭДС умножалась на соответствующую сумму слагаемых вида , получим уравнение для тока ветви

 . (3.11)

В правой части уравнения (3.11) имеем сумму слагаемых – токов, созданных каждой из ЭДС в отдельности.

 Важнейшим классом случайных процессов, встречающихся на практике, является класс стационарных случайных процессов

Принцип наложения: ток любой i-ой ветви равен алгебраической сумме токов, созданных каждой из ЭДС цепи в отдельности.

Рис.3.3. Иллюстрация принципа наложения

На сформулированном принципе базируется метод наложения, суть которого состоит в следующем: в исходной электрической цепи поочередно закорачиваются все источники ЭДС, кроме одного, и производится расчет частичных токов в ветвях любым из известных методов.

Для определения реальных токов в исходной цепи производится алгебраическое суммирование этих частичных токов:

;

;

.

Входные и взаимные проводимости Пусть дана некоторая электрическая цепь, содержащая единственный источник ЭДС в k-ой ветви.

Свойство взаимности Рассмотрим еще одно важное свойство, имеющее место в сложных цепях, присущее линейным электрическим цепям, базирующееся на понятиях входных и взаимных проводимостей.

Преобразование треугольника сопротивлений в эквивалентную звезду и обратное преобразование.


Высшие гармоники при соединении фаз источника и приемника звездой