Анализ цепей синусоидального тока Метод законов Кирхгофа Векторные диаграммы Резонанс в электрических цепях Топологические методы расчета Расчет сложных трехфазных цепей Теория нелинейных цепей Уравнения Максвелла canadian pharmacy.com

Электротехника. Расчет электрических цепей в задачах курсового расчетах

Методы составления характеристического уравнения

Свободный режим схемы не зависит от источников энергии, определяется только структурой схемы и параметрами ее элементов. Из этого следует, что корни характеристического уравнения p1, p2,…, pn будут одинаковыми для всех переменных функций (токов и напряжений).

Характеристическое уравнение можно составить различными методами. Первый метод – классический, когда характеристическое уравнение составляется строго в соответствии с дифференциальным по классической схеме. При расчете переходных процессов в сложной схеме составляется система из “m” дифференциальных уравнений по законам Кирхгофа для схемы цепи после коммутации. Так как корни характеристического уравнения являются общими для всех переменных, то решение системы дифференциальных уравнений выполняется относительно любой переменной (по выбору). В результате решения получают неоднородное дифференциальное уравнение с одной переменной. Составляют характеристическое уравнение в соответствии с полученным дифференциальным и определяют его корни. При поверочном расчете катушки известны напряжение питающей сети, размеры и обмоточные данные катушки и размеры магнитопровода. Поэтому в данном случае исходят из определения н.с. катушки, с помощью которой находят магнитный поток, и проверки требуемых величин В и F в соответствии с заданными размерами.

Пример. Составить характеристическое уравнение и определить его корни для переменных в схеме рис. 131. Параметры элементов заданы в общем виде.

Система дифференциальных уравнений по законам Кирхгофа:

Решим систему уравнений относительно переменной i3, в результате получим неоднородное дифференциальное уравнение:

Характеристическое уравнение и его корень:

  [c-1]

Второй способ составления характеристического уравнения заключается в приравнивании нулю главного определителя системы уравнений Кирхгофа для свободных составляющих переменных.

Пусть свободная составляющая произвольного тока имеет вид , тогда

 

Система уравнений для свободных составляющих получается из системы дифференциальных уравнений Кирхгофа путем замены производных от переменных на множитель р, а интегралов – на 1/р. Для рассматриваемого примера система уравнений для свободных составляющих имеет вид:

Характеристическое уравнение и его корень:

Третий способ составления характеристического уравнения (инженерный) заключается в приравнивании нулю входного операторного сопротивления схемы относительно любой ее ветви.

Операторное сопротивление элемента получается из его комплексного сопротивления путем простой замены множителя jω на р, следовательно

Для рассматриваемого примера:

;

;

.

Третий способ является наиболее простым и экономичным, поэтому он чаще других применяется при расчете переходных процессов в электрических цепях.

Корни характеристического уравнения характеризуют свободный переходной процесс в схеме без источников энергии. Такой процесс протекает с потерями энергии и поэтому затухает во времени. Из этого следует, что корни характеристического уравнения должны быть отрицательными или иметь отрицательную вещественную часть.

В общем случае порядок дифференциального уравнения, которым описывается переходный процесс в схеме, и, следовательно, степень характеристического уравнения и число его корней равны числу независимых начальных условий, или числу независимых накопителей энергии (катушек L и конденсаторов C). Если в схеме цепи содержатся параллельно включенные конденсаторы С1, С2,… или последовательно включенные катушки L1, L2,…, то при расчете переходных процессов они должны быть заменены одним эквивалентным элементом СЭ =С1 +С2+… или LЭ =L1 +L2+…

Таким образом, общий вид решения для любой переменной при расчете переходного процесса может быть составлен только из анализа схемы цепи, без составления и решения системы дифференциальных уравнений.

Для рассматриваемого выше примера:

а) – при e(t)=E=const;

б)  – при e(t)=Emsin(ωt+).

7. Определение постоянных интегрирования

Определение постоянных интегрирования производится на заключительном этапе расчета переходного процесса, когда остальные составляющие решения уже найдены. Постоянные интегрирования определяются путем подстановки в решение для искомой функции соответствующих начальных условий.

Пусть решение для искомой функции i(t) содержит только одну постоянную интегрирования:

Постоянная интегрирования находится путем подстановки в решение начального условия для самой функции, т.е. i(0):

.

Пусть решение для искомой функции i(t) содержит две постоянных интегрирования и имеет вид:

Постоянные интегрирования в этом случае находятся путем подстановки в решение начальных условий для самой функции i(0) и для ее первой производной :

В результате совместного решения этой системы уравнений определяют искомые постоянные интегрирования А1 и А2 .

Последовательность выполнения отдельных этапов расчета переходных процессов классическим методом показана ниже в виде диаграммы.

Примечания: 1. Выполнение всех этапов, обозначенных в диаграмме клетками, является обязательным и необходимым.

Выполнение первых пяти этапов, находящихся в верхнем горизонтальном ряду диаграммы, может производиться в любой последовательности, так как они не зависят друг от друга.

 

 

 

 

 

 

 

Пример. Для схемы рис. 132 с заданными параметрами элементов: Е=100 В, R=50 Ом, R1=20 Ом, R2=30 Ом, С=83,5 мкФ, определить ток i1 после коммутации.

1)Общий вид решения для искомой функции:

2)Определение установившейся составляющей из расчета схемы после коммутации:

А

3)Характеристическое уравнение и его корень:

, с-1

4)Независимое начальное условие uс(0) из расчета схемы до коммутации:

В

5)Система дифференциальных уравнений по законам Кирхгофа для схемы после коммутации:

 (1)

  (2)

 (3)

6)Начальное условие i1(0), необходимое для определения постоянной интегрирования из уравнения (1):

А

7)Определение постоянной интегрирования:

А

8)Решение для искомой функции:

9)Графическая диаграмма искомой функции i1(t) показана на рис. 133:

 

 

 

 

 

 

 

 

 

9. Операторный метод расчета переходных процессов

Если система дифференциальных уравнений, которыми описывается переходной процесс в схеме, решается операционным методом, то и сам метод расчета переходного процесса также называется операционным или операторным.

Сущность операторного метода состоит в том, что на 1-ом этапе действительные функции времени i(t), u(t), называемые оригиналами, заменяются некоторыми новыми функциями I(p),U(p), называемыми операторными изображениями. Соответствие между оригиналом функции f(t) и ее операторным изображением F(p) устанавливается на основе прямого преобразования интеграла Лапласа:

  или ,

где Ûзнак соответствия; p=+j - комплексный оператор Лапласа.

Если s = , то p= j, и преобразование Лапласа превращается в преобразование Фурье, которое лежит в основе комплексного метода расчета цепей переменного тока.

Преобразование Лапласа позволяет заменить операции 2-го рода над оригиналами функций (дифференцирование и интегрирование) на операции 1-го рода (умножение и деление) над операторными изображениями этих функций.

Расчет переходных процессов операторным методом условно выполняется в 3 этапа.

На 1-м этапе расчета система дифференциальных уравнений, составленная по законам Кирхгофа для оригиналов функций, после применения преобразования Лапласа превращается в систему алгебраических уравнений для операторных изображений этих функций.

На 2-ом этапе выполняется решение системы алгебраических операторных уравнений относительно искомой функции, в результате чего получают выражение искомой функции в операторной форме F(p).

На заключительном 3-м этапе выполняется обратный переход от найденного операторного решения для искомой функции F(p) к соответствующей ей функции времени f(t), т. е. Выполняется переход от изображения функции F(p) к ее оригиналу f(t).

Теоретически обратный переход от операторного изображения функции F(p) к ее оригиналу f(t) устанавливается на основе обратного преобразования Лапласа:

.

На практике для обратного перехода используются более простые и удобные методы, а именно: формула разложения и таблицы соответствия.

 

10. Операторные изображения некоторых функций времени

 Найдем операторные изображения некоторых функций времени, которые встречаются в электротехнике.

Изображение постоянной функции f(t)=А:

.

2) Изображения экспоненциальных функций:

;

3) Изображения гармонических функций:

,

,

.

Изображения 1-ой и 2-ой производной от функции времени:

.

Изображение определенного интеграла от функции:

.

Для удобства пользования сведем полученные результаты в общую таблицу, которая называется таблицей соответствия.


Таблица соответствия

11. Законы электротехники в операторной форме

 Мгновенные значения тока i(t) и напряжения u(t) на идеальных элементах электрических схем связаны между собой дифференциальной формой уравнений: uR(t) = iR – для резистора;  - для катушки индуктивности;  - для конденсатора.

Применим к дифференциальным уравнениям преобразование Лапласа и получим соответствующее им операторные изображения:   - для резистора;  - для катушки индуктивности;  - для конденсатора.

 Таким образом, идеальным элементам R, L, C электрической схемы будут соответствовать новые схемные представления этих элементов в операторной схеме (см. табл.).

Здесь R, pL, 1/pC – операторные сопротивления соответственно резистора R, катушки L и конденсатора C. Операторное сопротивление Z(p) любого участка схемы можно получить из его комплексного сопротивления Z(jw), заменив в выражении множитель jw на оператор p.

Li(0), uC(0)/p – внутренние источники ЭДС, обусловленные запасами энергии в магнитном и электрическом полях в момент коммутации при t=0. Направления действия внутренних источников ЭДС принимаются по направлению тока i(0) для источника L i(0) и навстречу напряжению uC(0) для источника uC(0)/p.

Электричес-кая схема

Дифференциаль-ные уравнения

Операторные уравнения

Операторная схема

 u

 

 I(p) U(p)

 u

U(p)

 u

U(p)

C учетом полученных соотношений любую электрическую схему для оригиналов функций i(t), u(t) можно заменить соответствующей ей операторной схемой для изображений функций I(p) ,U(p). Например, электрической схеме рис. 134 соответствует операторная схема, представленная на рис. 135.

Для электрической схемы рис. 134 справедливо дифференциальное уравнение, составленное по 2-му закону Кирхгофа:

.


Для операторной схемы рис. 135 справедливо аналогичное уравнение, но в операторной форме:

, откуда следует:

,

где  – операторное сопротивление всей схемы,  - сумма всех источников ЭДС контура, в том числе и внутренних.

Для сложных операторных схем справедливы 1-й и 2-й законы Кирхгофа в операторной форме:

Для расчета таких схем можно применять любые методы расчета линейных цепей: метод законов Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Порядок составления операторных уравнений для сложных схем аналогичен методу, тому порядку, который применяется по этому методу для электрических схем.


Методы расчета электрических полей постоянного тока