Анализ цепей синусоидального тока Метод законов Кирхгофа Векторные диаграммы Резонанс в электрических цепях Топологические методы расчета Расчет сложных трехфазных цепей Теория нелинейных цепей Уравнения Максвелла

Электротехника. Расчет электрических цепей в задачах курсового расчетах

Векторные диаграммы переменных токов и напряжений

Из курса математики известно, что любую синусоидальную функцию времени, например i(t)=Imsin(wt+a), можно изобразить вращающимся вектором при соблюдении следующих условий :

  а) длина вектора в масштабе равна амплитуде функции Im ;

 б) начальное положение вектора при t = 0 определяется начальной фазой a;

  в) вектор равномерно вращается с угловой скоростью w, равной угловой частоте функции.

 

 При соблюдении названных условий проекция вращающегося вектора на вертикальную ось y в системе координат х-у в любой момент времени t¢ равна мгновенному значению функции i(t¢), следовательно i = Im sin(wt+a)

Рассмотрим процессы в схеме электрической цепи рис. 36. Изобразим синусоидальные функции токов и напряжений вращающимися векторами для произвольного момента времени, например t = 0 (рис. 37а). При рассмотрении установившегося режима в схеме мгновенные значения функций не представляют интереса, поэтому момент времени, для которого строится векторная диаграмма, может быть выбран произвольно. Целесообразно один из векторов принять начальным или исходным и совместить его на диаграмме с одной из осей координат (вектор Е на рис. 37б совмещен с осью y), при этом остальные векторы располагают по отношению к исходному вектору под углами, равными их сдвигам фаз.

 

 

Так как на практике интерес представляют действующие значения токов и напряжений, то на векторных диаграммах длины векторов принимают равными в выбранных масштабах их действующим значениям (рис. 37б).

 

 

Совокупность векторов токов и напряжений, характеризующих процессы в цепи переменного тока, построенных в выбранных масштабах и с соблюдением правильной их ориентации друг относительно друга, называется векторной диаграммой.

 

 

 

4. Теоретические основы комплексного метода расчета цепей переменного тока

 

 Из курса математики известно, что комплексное число Z может быть представлено в следующих трех формах: показательной, тригонометрической и алгебраической:

В основе перехода от одной формы комплексного числа к другой лежит известная из математики формула Эйлера : 

Здесь обозначены:

j =   – мнимое единичное число,

Z – модуль комплексного числа,

a- аргумент комплексного числа,

а – вещественная часть комплексного числа,

jb – мнимая часть комплексного числа.

Соотношения между коэффициентами различных форм комплексного числа вытекают из формулы Эйлера :

 a = Z cosa ; b = Z sina ; Z =; a = arctg .

 Приведем наиболее часто встречающиеся численные соотношения

ej0 = 1; e± j180° = -1;  e j90° = +j ; e-j90° = -j ; 1/j = -j ; j2 = -1; j3 = -j ; и т. д. 

 Комплексное число Z = Z eja = a + jb может быть изображено вектором на комплексной плоскости (рис. 38), при этом алгебраической форме числа  соответствует декартовая система координат (a ® x; b ® y), а показательной форме числа Z =  - полярная система координат (Z ® r; a ® q).

 

Можно утверждать, что каждой точке (вектору) на комплексной плоскости соответствует определенное комплексное число, и наоборот, каждому комплексному числу соответствует определенная точка (вектор) на комплексной плоскости.

Известно, что синусоидальную функцию можно изобразить вектором, а вектор в свою очередь можно представить комплексным числом. Таким образом, синусоидальные токи и напряжения, характеризующие установившийся режим цепи переменного тока, могут быть представлены комплексными числами :

 Û - комплексная амплитуда,

 

 Û - комплексное действующее значение. Здесь Û -знак соответствия.

При расчете цепей переменного тока возникает необходимость выполнения различного рода математических операций с синусоидальными функциями. При замене синусоидальных функций (оригиналов) комплексными числами (изображениями) соответствующие математические операции выполняются с комплексными числами.

Сложение (вычитание) комплексных чисел производится в алгебраической форме

Умножение комплексных чисел может выполняться, как в алгебраической, так и в показательной формах:

 

Деление комплексных чисел может выполняться как в алгебраической, так и в показательной формах:

Возведение в степень (извлечение корня) комплексного числа выполняется только в показательной форме:

Установим порядок дифференцирования и интегрирования синусоидальных функций в комплексной форме. Пусть задана некоторая функция тока и ее комплексное изображение:

Производная и интеграл от этой функции их комплексные изображения будут равны:

;

.

Таким образом, дифференцированию синусоидальной функции времени соответствует в комплексной форме умножение ее комплексного изображения на множитель jw, а интегрированию – соответственно деление на тот же коэффициент:

 

Замена математических операций 2-го рода (дифференцирование, интегрирование) операциями 1-го рода (умножение, деление) существенно упрощает расчет цепей переменного тока в комплексной форме.

Современные инженерные калькуляторы в режиме «compl» позволяют выполнять все действия с комплексными числами непосредственно так же, как с обычными числами. При этом следует принять во внимание, что калькулятор выполняет действия над комплексными числами только в алгебраической форме  и результаты расчета выдает также в алгебраической форме. Если исходные комплексные числа заданы в показательной форме , то после их ввода необходимо выполнить операцию преобразования их в алгебраическую форму.

Комплексный метод расчета цепей переменного тока был разработан в 1910-1912гг. американским инженером Штейнметцом и сыграл большую роль в развитии теории электрических цепей переменного тока.

5. Мощность переменного тока

В сложной электрической цепи, состоящей из разнородных элементов R, L, C, одновременно происходят следующие физические процессы:

а) необратимый процесс преобразования электрической энергии в другие виды (тепловую, механическую и др.), который называется активным;

б) обратимый процесс колебания энергии между переменным электрическим полем конденсаторов , магнитным полем катушек и источником энергии, который называется реактивным.

Процесс преобразования и процесс колебания энергии взаимно накладываются друг на друга, создавая в цепи единый сложный энергетический процесс.

Пусть электрическая цепь носит активно-индуктивный характер и может быть представлена простой схемой, состоящей из источника ЭДС е и пассивных элементов R и L, включенных последовательно (рис. 39):





Напряжение и ток на входе схемы как функции времени и их комплексные изображения будут равны:

;

.

Мгновенная мощность, как функция времени, состоит из двух слагаемых:

Первое слагаемое  характеризует процесс преобразования электрической энергии в другие виды (активный процесс). Второе слагаемое  изменяется по периодическому закону с частотой 2w и характеризует процесс обмена энергией между магнитным полем приемника и источником энергии (реактивный процесс).

Количество энергии, которое преобразуется в приемнике в другие виды в единицу времени, называется активной мощностью P. Математически активная мощность может быть получена как среднее значение мгновенной мощности за период:

Реактивная мощность Q характеризует интенсивность обмена энергией между магнитным полем приемника и источником и определяется по формуле:

Реактивная мощность индуктивного характера  положительна, а емкостного характера   отрицательна. Противоположность знаков указывает на тот факт, что колебания энергии в разнородных элементах совершаются в противофазе.

В технике используется понятие полной мощности S, которая не имеет физического смысла и определяется по формуле:

 .

Мощности S, P, Q образуют прямоугольный треугольник, который называется треугольником мощностей (рис. 40).

 

 

Хотя физическая размерность мощностей S, P, Q одинакова, а именно , для каждой из них на практике применяется своя единица измерения: для активной мощности P - ватт , для реактивной мощности Q - вольтампер реактивный , для полной мощности S - вольтампер .

В соответствии с законом сохранения энергии в цепи переменного тока должны балансироваться независимо друг от друга активные и реактивные мощности приемников и источников энергии: и . Баланс для полных мощностей не соблюдается.

При расчете цепей переменного тока комплексным методом мощности S, P, Q представляют в комплексной форме:

  где - сопряженный комплекс тока .

Таким образом

  - модуль комплексной мощности;

  - вещественная часть;

  - мнимая часть.

6. Переменные ток в однородных идеальных элементах

Существует три типа идеальных схемных элементов: резистор R, катушка L и конденсатор C. Рассмотрим процессы в цепи с каждым из названных элементов в отдельности.

а) Цепь с идеальным резистором R.

Пусть к цепи с резистором R (рис. 41а) приложено переменное напряжение:

.

Ток и напряжение на зажимах резистора связаны между собой физическим законом Ома, т. е.

,

где ,  - уравнения закона Ома для амплитудных и действующих значений функций.

Угол сдвига фаз между напряжением и током , следовательно, в цепи с резистором R ток и напряжение совпадают по фазе.

Комплексное сопротивление резистора является чисто вещественным:

.Мгновенная мощность в цепи с резистором R всегда положительна:

Это означает, что в цепи с резистором R протекает только процесс преобразования электрической энергии в другие виды (активный процесс). По этой причине сопротивление резистора R на переменном токе называется активным.

Графические диаграммы функций времени u(t), i(t), p(t) представлены на рис. 42, а векторная диаграмма напряжения и тока - на рис. 41б.

 

 

 

 

 

 

 

 

 

б) Цепь с идеальной катушкой L

Пусть к цепи с идеальной катушкой L (рис. 43а) приложено переменное напряжение:

Ток и напряжение на зажимах катушки связаны между собой физическим законом электромагнитной индукции , откуда следует:

,

  где  - индуктивное реактивное сопротивление катушки,

Уравнения закона Ома для амплитудных и действующих значений функций:

Угол сдвига фаз , т.е. в цепи с катушкой L ток отстает от напряжения (напряжение опережает ток) на угол .

Комплексное сопротивление катушки является чисто мнимым и положительным:

Мгновенная мощность цепи изменяется по синусоидальному закону с частотой 2w:

.

Это означает, что в цепи с катушкой L происходит только периодический процесс обмена энергией между магнитным полем катушки  и источником (реактивный процесс). По этой причине сопротивление катушки переменному току XL =wL называется реактивным.

 Графические диаграммы функций времени u(t), i(t), p(t) представлены на рис. 44, а векторная диаграмма напряжения и тока - на рис. 43б.

 


в). Цепь с идеальным конденсатором С.

Пусть к цепи с идеальным конденсатором С (рис. 45а) приложено переменное напряжение

Ток и напряжение на зажимах конденсатора связаны между собой физическим законом сохранения заряда:

,

где  - емкостное реактивное сопротивление [Ом].

Уравнения закона Ома для амплитудных и действующих значений функций: , .

Угол сдвига фаз , т. е. в цепи с конденсатором С ток опережает напряжение (напряжение отстает от тока) на угол 90°.

Комплексное сопротивление конденсатора является чисто мнимым и отрицательным:

.

Мгновенная мощность цепи изменяется по синусоидальному закону с частотой 2w:

Это означает, что в цепи с конденсатором С происходит только периодический процесс обмена энергией между электрическим полем конденсатора  и источником (реактивный процесс). По этой причине сопротивление конденсатора переменному току  называется реактивным.

Графические диаграммы функций времени u(t), i(t), p(t) представлены на рис. 46, а векторная диаграмма напряжения и тока – на рис. 45б.

 


Методы расчета электрических полей постоянного тока