Анализ цепей синусоидального тока Метод законов Кирхгофа Векторные диаграммы Резонанс в электрических цепях Топологические методы расчета Расчет сложных трехфазных цепей Теория нелинейных цепей Уравнения Максвелла

Электротехника. Расчет электрических цепей в задачах курсового расчетах

Теорема об эквивалентном генераторе

Формулировка теоремы: по отношению к выводам выделенной ветви или отдельного элемента остальную часть сложной схемы можно заменить а)эквивалентным генератором напряжения с ЭДС Еэ , равной напряжению холостого хода на выводах выделенной ветви или элемента (Еэ=Uxx) и с внутренним сопротивлением R0, равным входному сопротивлению схемы со стороны выделенной ветви или элемента (R0=RВХ); б)эквивалентным генератором тока с JЭ, равным току короткого замыкания на выводах выделенной ветви или элемента (Jэ=Iкз), и с внутренней проводимостью G0, равной входной проводимости схемы со стороны выделенной ветви или элемента (G0=Gвх).

Для доказательства п. а) теоремы удалим из схемы рис. 26а выделенную ветвь и между точками ее подключения измерим (рассчитаем) напряжение холостого хода Uxxab = ja-jb  (рис. 26б).

Включим последовательно c выделенной ветвью два направленные встречно источника ЭДС, равные напряжению холостого хода () (рис. 26в). Такое включение дополнительных источников ЭДС не изменит режим сложной схемы, так как их действие взаимно компенсируется.

Определим ток в выделенной ветви по принципу наложения, как алгебраическую сумму из двух частичных токов: а)тока , возникающего от независимого действия ЭДС (рис. 26г); б) тока , возникающего от совместного действия ЭДС и всех источников сложной схемы (рис. 26д).

Частичный ток в схеме рис. 26г по закону Ома равен:

,

где Rвх– входное сопротивление схемы со стороны выделенной ветви.

Частичный ток в схеме рис. 26д равен нулю I¢¢0, так как E2=Uxx обеспечивает условия режима холостого хода ветви.

Результирующий ток в выделенной ветви равен:

  .

Полученному уравнению соответствует эквивалентная схемы замещения рис. 27а, где остальная часть схемы заменена эквивалентным генератором напряжения с параметрами Eэ=Uxxаb, , что и требовалось доказать.

 

(Еэ=Uxx)

Генератор напряжения (EЭ, R0) может быть заменен эквивалентным генератором тока (JЭ, G0) (рис. 27б) исходя из условия эквивалентности:.

Параметры эквивалентного генератора тока могут быть определены (рассчитаны или измерены) независимым путем, как Jэ=Iкзаb , G0=Gвхаb, где Iкзаb - ток короткого замыкания в выделенной ветви.

Метод расчета тока в выделенной ветви сложной схемы, основанный на применении теоремы об эквивалентном генераторе, получил название метода эквивалентного генератора напряжения (тока) или метода холостого хода и короткого замыкания (х.х. и к.з.). Последовательность (алгоритм) расчета выглядит так.

1) Удаляют из сложной схемы выделенную ветвь, выполняют расчет оставшейся части сложной схемы любым методом и определяют напряжение холостого хода  между точками подключения выделенной ветви.

2)Удаляют из сложной схемы выделенную ветвь, закорачивают в схеме точки подключения выделенной ветви, выполняют расчет оставшейся части сложной схемы любым методом и определяют ток короткого замыкания Iкзаb в закороченном участке между точками подключения выделенной ветви.

3)Удаляют из схемы выделенную ветвь, в оставшейся части схемы удаляют все источники (источники ЭДС E закорачивают, а ветви с источниками тока J удаляют из схемы), методом преобразования выполняют свертку пассивной схемы относительно точек подключения выделенной ветви и таким образом определяют Rвхаb.

4) Составляют одну из эквивалентных схем замещения с генератором напряжения (рис. 27а) или с генератором тока (рис. 27б).

5) Выполняют расчет эквивалентной схемы (рис. 27а или рис. 27б) и находят искомый ток, например:

- по закону Ома для схемы рис. 27а;

- по методу двух узлов для схемы рис. 27б.

Так как между тремя параметрами эквивалентного генератора справедливо соотношение , то для их определения достаточно рассчитать любые два из трех параметров согласно п.п. 1), 2), 3), а третий параметр определить из приведенного соотношения.

Пример. В схеме рис. 28 с заданными параметрами элементов (E1=100 В; E2=20 В; E3=30 В, E4=10 В; R1=R2=40 Ом; R3=R4=20 Ом; R5=R6=10 Ом) определить ток в выделенной ветви I6 методом эквивалентного генератора.

 

 

 

 

 

Решение задачи выполняется поэтапно.

1) Определение Uxx=Eэ в схеме рис. 29.

A; A;

  Þ

  B

2) Определение Rвх=R0 в схеме рис. 30.

 Ом

 

 

3) Расчет эквивалентной схемы рис. 31 и определение искомого тока I6.

A

 

 

 

 

Электрические цепи переменного синусоидального тока

1. Переменный ток (напряжение) и характеризующие его величины

Переменным называется ток i(t) [напряжение u(t)], периодически изменяющийся во времени по произвольному закону. В электроэнергетике понятие ’’переменный’’ употребляют в более узком смысле, а именно: под переменным понимают ток (напряжение), изменяющийся во времени по синусоидальному закону:

i(t)=Im sin(wt+yi),

u(t)=Umsin(wt+yu)

Графические диаграммы этих функций имеют вид рис. 32:

Время, за которое происходит одно полное колебание, называется периодом и обозначается буквой Т. Число полных колебаний (периодов) в единицу времени называется частотой f:

  [Гц]

Из математики известно, что синусоидальная функция времени может быть описана вращающимся вектором со скоростью вращения w. В технике эта величина получила название угловой частоты:

w = 2pf =  [с-1] или [рад/с]

В выражениях функций i(t) и u(t) приняты обозначения:

u(t), i(t) или u, i  - мгновенные значения функций, т.е. их значения в произвольно выбранный момент времени;

Um, Im - амплитудные (максимальные) значения функций;

(wt+y) - фаза, определяющая момент времени;

yu, yi – начальные фазы функций, определяющие их значения в момент t=0, зависят от выбора начала отсчета времени;

j = yu-yi – угол сдвига фаз (разность начальных фаз) между напряжением и током, не зависит от выбора начала отсчета времени.

Синусоидальная форма для функций токов и напряжений в электроэнергетике утверждена в качестве стандарта и является одним из показателей качества электроэнергии как товара.

Из физических законов следует, что при протекании синусоидального тока i=Imsinwt  через любой линейный элемент электрической цепи напряжение на его зажимах также будет синусоидальным, и наоборот, при синусоидальном напряжении ток также будет иметь синусоидальную форму.

Из закона Ома для резистора R следует:

uR = Ri=RImsinwt=Umsinwt.

Из закона электромагнитной индукции для катушки L следует:

uL = - e = = wLImcoswt = Umsin(wt+90°).

Из закона сохранения заряда для конденсатора С следует:

uC = = Umsin(wt-90°).

Таким образом, в цепи переменного тока любой сложности напряжения и токи на всех участках будут изменяться по синусоидальному закону при условии, что источники энергии обеспечивают синусоидальную форму напряжений на их выводах.

Диапазон частот токов и напряжений, применяемых в различных отраслях современной техники, очень велик: от 10-1 Гц до 109 Гц. В электроэнергетике в качестве стандарта частоты в Европе принята частота f=50 Гц (w=2pf = 314 c-1), а в США и Канаде f = 60 Гц (w = 377 с-1), в других странах возможны оба варианта или один из них.

 Частота f = 50 Гц принята в качестве стандарта исторически на заре развития электроэнергетики и уже не соответствует сегодняшнему уровню развития техники. Оптимальной на сегодня была бы частота в диапазоне 150 – 200 Гц. Однако переход на оптимальную частоту связан с большими техническими сложностями и в ближайшее время не может быть осуществлен.

2. Среднее и действующее значения переменного тока и напряжения

Среднее значение Fср произвольной функции времени f(t) за интервал времени Т определяется по формуле :

Численно среднее значение Fср равно высоте прямоугольника, равновеликого по площади фигуре, ограниченной кривой f(t), осью t и пределами интегрирования 0 – Т (рис. 33).

Для синусоидальной функции среднее значение за полный период Т (или за целое число полных периодов) равно нулю, так как площади положительной и отрицательной полуволн этой функции равны. Для переменного синусоидального тока (напряжения) среднее значение определяют за половину периода (Т/2) между двумя нулевыми значениями (рис. 34) :

Iср=Imsinwt dt =  Im

Аналогично получим для напряжения: 

 

 Действующее значение переменного тока (напряжения) определяется как среднеквадратичное значение функции за период :

Аналогично получим для напряжения:

Количество энергии, выделяемое переменным током в резисторе R за время Т, по закону Джоуля будет равно W = =I2RT, а активная мощность соответственно Р =   = I2R .

 Таким образом, параметры электрической энергии на переменном токе (количество энергии, мощность) характеризуются действующими значениями напряжения U и тока I. По этой причине в электроэнергетике принято все теоретические расчеты и экспериментальные измерения выполнять для действующих значений токов и напряжений. В радиотехнике и в технике связи, наоборот, оперируют максимальными значениями этих функций.

Приведенные выше формулы для энергии и мощности переменного тока полностью совпадают с аналогичными формулами для постоянного тока. На этом основании можно утверждать, что энергетически постоянному току эквивалентно действующее значение переменного тока.

Синусоидальная функция времени, как периодическая функция, характеризуется следующими коэффициентами :

ка =  =  » 1,41- коэффициент амплитуды,

кф = – коэффициент формы.


Методы расчета электрических полей постоянного тока