Анализ цепей синусоидального тока Метод законов Кирхгофа Векторные диаграммы Резонанс в электрических цепях Топологические методы расчета Расчет сложных трехфазных цепей Теория нелинейных цепей Уравнения Максвелла

Электротехника. Расчет электрических цепей в задачах курсового расчетах

Метод законов Кирхгофа

Теоретическая база метода: 1-й и 2-й законы Кирхгофа.

1-й закон Кирхгофа: алгебраическая сумма токов ветвей в узле схемы равна нулю ().

2-й закон Кирхгофа: алгебраическая сумма падений напряжений в произвольном контуре схемы равна алгебраической сумме ЭДС ().

Пусть требуется выполнить расчет режима в заданной сложной схеме (рис. 16) и определить токи в ветвях, напряжения на отдельных элементах, мощности источников и приемников энергии. Задана схема цепи и параметры ее отдельных элементов (E1, E2, J1, J1, J2, R1, R2, R3, R4, R5).

Анализируем структуру схемы: схема содержит n=3 (0, 1, 2) узлов и m=5 ветвей с неопределенными токами. В ветвях с источниками тока J токи определены источниками. Общее число уравнений должно быть равно числу определяемых токов “m”.

Последовательность (алгоритм) расчета.

1) Задаются (произвольно) положительными направлениями токов в ветвях схемы (I1, I2, I3, I4, I5).

2) Составляется (n-1) уравнений для узлов по первому закону Кирхгофа. Уравнение для последнего n-го узла является зависимым (оно может быть получено путем сложения первых (n-1) уравнений).

3) Недостающие m-(n-1) уравнений составляются по 2-му закону Кирхгофа. Правило выбора контуров для составления уравнений: каждый последующий контур должен включать в себя хотя бы одну новую ветвь, не охваченную предыдущими уравнениями. Число независимых контуров для схемы любой сложности не может быть больше числа m-(n-1).

Ниже приведена система уравнений Кирхгофа для схемы рис. 16, состоящая из m=5 уравнений, из которых n-1=2 составлены для узлов 1 и 2 по 1-му закону Кирхгофа и m-(n-1)=3 составлены для контуров К1, К2, К3 по 2-му закону Кирхгофа:

  - узел 1,

  - узел 2,

  - контур К1,

  - контур К2,

  - контур К3.

4) Система уравнений приводится к матричной форме, составляются матрицы коэффициентов:

5) Система уравнений решается на ЭВМ по стандартной программе для решения линейных алгебраических уравнений с вещественными коэффициентами, в результате чего определяются неизвестные токи I1, I2, I3, I4, I5. Отрицательные результаты, получаемые для некоторых токов, означают, что их действительные (физические) направления не соответствуют направлениям, принятым в начале расчета.

6) Определяются напряжения на отдельных элементах схемы (), мощности источников ЭДС (), источников тока () и приемников (). При этом мощности приемников энергии всегда положительны, а мощности источников энергии могут быть отрицательными, если сомножители в произведениях  и  не совпадают по направлению.

 

4. Метод контурных токов

Теоретическая база метода контурных токов – 2-ой закон Кирхгофа в сочетании с принципом наложения. Предполагают, что в каждом элементарном контуре-ячейке схемы протекает «свой» контурный ток Ik, а действительные токи ветвей получаются по принципу наложения контурных токов как их алгебраические суммы. В качестве неизвестных величин, подлежащих определению, в данном методе выступают контурные токи. Общее число неизвестных составляет m-(n-1).

Пусть требуется выполнить расчет режима в заданной сложной схеме рис. 17. Параметры отдельных элементов схемы заданы.

Последовательность (алгоритм) расчета.

1) Задаются (произвольно) положительными направлениями контурных токов в контурах-ячейках схемы(Iк1, Iк2, Iк3 ). Контуры-ячейки следует выбирать так, чтобы они не включали в себя ветви с источниками тока. Ветви с источниками тока J образуют свои контуры с заданными токами (J1, J2).

2) Составляются m-(n-1) уравнений по 2-му закону Кирхгофа для выбранных контуров-ячеек с контурными токами Iк1, Iк2, Iк3. В уравнениях учитываются падения напряжений как от собственного контурного тока, так и от смежных контурных токов.

Ниже приведена система контурных уравнений для схемы рис. 17:

В обобщенной форме система контурных уравнений имеет вид:

Здесь введены следующие обозначения:

R11= R1 +R4; R22 = R3 +R4 +R5 и т. д. – собственные сопротивления контуров, равные сумме сопротивлений всех элементов контура;

R12 = R21 = -R4 ; R23 = R32 = -R5 и т. д. – взаимные сопротивления между двумя смежными контурами, они положительны – если контурные токи в ветви совпадают, и отрицательны – если контурные токи в ветви направлены встречно, и всегда отрицательны – если все контурные токи ориентированы одинаково (например, по часовой стрелке), равны нулю – если контуры не имеют общей ветви, например, R13 = R31 = 0 ;

 E11 = E1 + J1R4, E22 = -E2, E33 = - E3 +J2R3 и т. д. – контурные ЭДС, равные алгебраической сумме слагаемых Enn = SE + SJR от всех источников контура.

Система контурных уравнений в матричной форме:

  или в сокращенно ,

где  - матрица контурных сопротивлений,  - матрица контурных токов,  - матрица контурных ЭДС.

3) Система контурных уравнений решается на ЭВМ по стандартной программе для решения систем линейных алгебраических уравнений с вещественными коэффициентами (SU1), в результате чего определяются неизвестные контурные токи Iк1, Iк2, Iк3.

4) Выбираются положительные направления токов в ветвях исходной схемы (рис. 1) (I1, I2, I3, I4, I5). Токи ветвей определяются по принципу наложения как алгебраические суммы контурных токов, протекающих в данной ветви.

I1 = Iк1; I2 = -Iк3;  I3 = -Iк2 – J2; I4 = Iк1 – Ik2+ J1; I5 = Iк2 - Ik3 .

5) При необходимости определяются напряжения на отдельных элементах (Uk = IkRk), мощности источников энергии (PEk = EkIk, PJk = Uk Jk) и мощности приемников энергии (Pk = Ik2 ×Rk).

 

5. Метод узловых потенциалов

Теоретическая база метода узловых потенциалов – 1-ый закон Кирхгофа в сочетании с потенциальными уравнениями ветвей. В этом методе потенциал одного из узлов схемы принимают равным нулю, а потенциалы остальных (n-1) узлов считают неизвестными, подлежащими определению. Общее число неизвестных составляет (n-1).

Рассмотрим обобщенную ветвь некоторой сложной схемы (рис. 18).

Свяжем потенциалы концов ветви (узлов) между собой через падения напряжений на отдельных участках:

  или 

Уравнение, связывающее потенциалы конечных точек ветви через падения напряжений на ее отдельных участках, называется потенциальным уравнением ветви. Из потенциального уравнения ветви могут быть определены ток ветви и напряжение на резисторе:

.

Пусть требуется выполнить расчет режима в заданной сложной схеме рис. 19. Параметры отдельных элементов схемы заданы.

Принимаем потенциал узла 0 равным нулю (j0 = 0), а потенциалы узлов 1 и 2 (j1 и j2) будем считать неизвестными, подлежащими определению.

Зададимся положительными направлениями токов в ветвях схемы I1, I2, I3, I4, I5. Составим потенциальные уравнения ветвей и выразим из них токи ветвей:

I1 = (j1 – j0 + E1 )/ R1

I2 = (j2 – j0 + E2 )/ R2

I3 = (j1 – j0 + E3 )/ R3

I4 = (j0 – j1 )/ R4

I5 = (j0 - j2  )/ R5


 

Составим (n-1)  уравнение по 1-му закону Кирхгофа для узлов 1 и 2:

-I1 – I3 + I4 – J1 – J2 = 0

-I2 + I3 + I5 + J2 =0

Подставим в уравнения 1-го закона Кирхгофа значения токов, выраженные ранее из потенциальных уравнений. После приведения коэффициентов получим систему узловых уравнений:

В обобщенной форме система узловых уравнений имеет вид:

Здесь введены следующие обозначения:

 G11 =1/R1 +1/R3 +1/R4; G22 =1/R2 +1/R3 +1/R5 и т.д. – собственные проводимости узлов, равные суммам проводимостей всех ветвей, сходящихся в данном узле, всегда положительны;

  G12 = G21 = 1/R3; Gnm = Gmn– взаимные проводимости между смежными узлами (1 и 2, m и n), равные сумме проводимостей ветвей, соединяющих эти узлы, всегда отрицательны;

J11 = - E1 /R3 – E3 /R3 – J1; J11 =- E2 /R2 – E3 /R3 + J1 и т. д. – узловые токи узлов, равные алгебраической сумме слагаемых E/R и J от всех ветвей, сходящихся в узле (знак ”+”, если источник действует к узлу, и знак “-” , если источник действует от узла).

Система узловых уравнений в матричной форме:

  или сокращенно ,

где  - матрица узловых проводимостей,  - матрица узловых потенциалов,  - матрица узловых токов.

Последовательность (алгоритм) расчета.

1) Принимают потенциал одного из узлов схемы равным нулю, а потенциалы остальных (n-1) узла считают неизвестными, подлежащими определению.

2) Руководствуясь обобщенной формой, составляют (n-1) уравнение для узлов с неизвестными потенциалами.

3) Определяются коэффициенты узловых уравнений и составляются их матрицы.

4) Система узловых уравнений решается на ЭВМ по стандартной программе для решения систем линейных алгебраических уравнений с вещественными коэффициентами, в результате чего определяются неизвестные потенциалы узлов j1, j2, …

5) Выбираются положительные направления токов в ветвях исходной схемы I1, I2 , I3, I4, I5. Токи ветвей определяются из потенциальных уравнений ветвей через потенциалы узлов j1, j2, ….

6) При необходимости определяются напряжения на отдельных элементах (Uk = IkRk), мощности источников энергии (PEk = EkIk, PJk = Uk Jk) и приемников энергии (Pk = Ik2 ×Rk).


Методы расчета электрических полей постоянного тока