Резонанс токов Коэффициент мощности Метод двух узлов Метод эквивалентного генератора Трехфазные цепи Соединение фаз генератора и нагрузки треугольником Четырехпроводная звезда Мощность трехфазных цепей ЭДС взаимоиндукции

Электротехника. Расчет электрических цепей в задачах курсового расчетах

Построим векторную диаграмму трансформатора под нагрузкой.

Пусть в качестве нагрузки используется активно-индуктивный потребитель (jн > 0). Для построения диаграммы используем составленную выше систему уравнений (6.23). Построение векторной диаграммы, приведенной на рис. 6.18, целесообразно начать с тока , совместив его для определенности с осью вещественных чисел.

Рис.6.18.Векторная диаграмма трансформатора под нагрузкой

несинусоидальные токи

Расчет электрических цепей, выполненный ранее, проводился в предположении, что источники энергии были либо постоянными, либо синусоидальными и вызывали в элементах цепей постоянные или синусоидальные токи. В реальных условиях кривые ЭДС, напряжения и тока лишь в определенной мере могут считаться синусоидальными, при этом указанные параметры цепей могут иметь характер периодический, квазипериодический (почти периодический) и непериодический. Это происходит за счет наличия в электрических цепях нелинейных элементов: вентиль (диод), электрическая дуга, катушка со стальным сердечником (дроссель), различного рода электрические помехи и т.д., которые искажают синусоидальную функцию, приводя к появлению несинусоидальных функций токов и напряжений, кроме того, сам источник энергии может являться генератором несинусоидальной ЭДС. На рис. 7.1 представлены варианты данных функций.

Рис.7.1. Пример несинусоидальных периодических функций

Разложение периодической функции в
тригонометрический ряд

Во всех задачах, где приходится иметь дело с периодическими несинусоидальными функциями токов, ЭДС и напряжений, необходимо свести их к более простому виду, для которого возможно применение известных методов расчета. Процессы, происходящие в линейных электрических цепях при несинусоидальных токах и напряжениях, удобнее всего рассчитывать, если воспользоваться тригонометрическим рядом Фурье. В общем случае выражение этого ряда имеет вид

f(ωt) = A0 + A1msin(ωt+ψ1) + A2msin(2ωt + ψ2) + … 138(7.1)

Первое слагаемое носит название нулевой гармоники или постоянной составляющей ряда, где k - номер гармоники, при k = 0 ψk = π/2, Akm = A0 - нулевая гармоника. Она присутствует в составе ряда не всегда. Если функция симметрична относительно оси времени, то нулевой гармоники нет.

Второе слагаемое - это первая или основная гармоника ряда, задает основной период T = 2π/ω.

Все остальные слагаемые носят название высших гармоник ряда. Период каждой из них кратен периоду основной гармоники. Сделаем преобразование ряда, раскрыв синус суммы,

  . 139(7.2)

 ;

  ;  . 

Коэффициенты ряда определяются по следующим формулам:

 ; 140(7.3)

.

Выражения для коэффициентов ряда позволяют получить разложение в ряд любой периодической функции, однако для большинства таких функций, которые используются в теории электрических цепей, эти разложения уже получены и могут быть взяты в соответствующей справочной литературе.

Состав элементов ряда может быть упрощен, если вид исходной функции обладает тем или иным видом симметрии, что иллюстрируется рис. 7.2.

Рис.7.2. Виды симметрии периодических функций

1) f(ωt) = - f(ωt+π) – функция симметричная относительно оси абсцисс.

Разложение в ряд такой функции не содержит постоянной составляющей и четных гармоник:

f(ωt) = A1msin(ωt + ψ1) + A3msin(3ωt + ψ3) + A5msin(5ωt + ψ5) + …

2) f(ωt) = f(- ωt) – функция симметричная относительно оси ординат.

В этом случае ряд не содержит синусных составляющих:

f(ωt) = A0 + A1mcosωt + A2mcos2ωt + A3mcos3ωt + …

3) Функция симметрична относительно начала координат:

f(ωt) = - f(-ωt);

Такая функция не содержит постоянной составляющей и косинусных составляющих:

f(ωt) = A1msinωt + A2msin2ωt + A3msin3ωt + …

Амплитудное, среднее и действующее значения периодических несинусоидальных функций

Эти понятия аналогичны тем, которые были введены применительно к синусоидальным колебаниям, но в то же время они имеют свою специфику.

Амплитудное значение – это максимальное значение функции за период.

На рис. 7.3 А – это максимальное значение функции f(wt).

 

Рис.7.3. Амплитудное значение несинусоидальной функции

Среднее по модулю значение

. 141

Действующее значение

  . (7.4)

Последний из приведённых параметров относится к наиболее важным параметрам несинусоидальных периодических функций, поскольку именно эта величина измеряется приборами. Будем считать, что f(ωt) задана рядом, тогда

Второе слагаемое при интегрировании за полный период обращается в ноль ввиду симметрии синусоидальных функций.

;

,

где Аk - действующее значение каждой из гармоник.

Тогда

  . 142(7.5)

Аналогично определяются действующие значения несинусоидального напряжения и любой другой функции, изменяющейся по несинусоидальному периодическому закону.

Действующее значение периодической несинусоидальной функции равно корню квадратному из суммы квадратов действующих значений отдельных его гармоник.

.

Коэффициенты, характеризующие форму несинусоидальных периодических функций

Для оценки несинусоидальных периодических функций в электроэнергетике вводят коэффициенты формы Kф, амплитуды Kа и искажения Ки.

Коэффициент формы определяется как отношение действующего к среднему по модулю значению.

 . 143(7.6)

 Для синусоиды .

Коэффициент амплитуды равен отношению максимального к действующему значению.

.  144(7.7)

 Для синусоиды .

Коэффициент искажений определяется отношением действующего значения первой гармоники к действующему значению всей кривой.

.  145(7.8)

Для синусоиды .

В электронике для оценки искажений пользуются коэффициентом гармоник, который определяется отношением действующего значения высших гармоник к действующему значению первой гармоники.

.  146(7.9)

Для синусоиды .


Определить все токи методом узловых потенциалов и показания вольтметра