Начертательная геометрия и машиностроительное черчение

МНОГОГРАННЫЕ И КРИВЫЕ ПОВЕРХНОСТИ
Построение проекций пирамиды и ее развертка
Построение проекции прямого круглого цилиндра и его развертка
Построение разверток поверхностей
Построение полной развертки поверхностей треугольной призмы
Построение развертки призмы правильной формы
Комплексный чертеж
Комплексный чертеж прямой
Комплексный чертеж плоскости
Взаимное положение точек и прямых, их принадлежность плоскости
Принадлежность точки и прямой плоскости
Преобразование комплексного чертежа
Проецирование прямой общего положения
Первая и вторая позиционные задачи
Прямая занимает проецирующее положение
Взаимное положение плоскостей
Метрические задачи. Ортогональная проекция прямого угла
Построение взаимно перпендикулярных фигур
Линии наибольшего наклона
Перпендикулярность двух плоскостей
Определение расстояний
Определение расстояния между параллельными фигурами
Определение углов между фигурами
Угол между прямой и плоскостью
Угол между плоскостями
Кривая линия
Понятие поверхности
Точка и линия на поверхности
Коническая и цилиндрическая поверхности
Поверхностью вращения
Принадлежность точки и линии поверхности вращения
Циклическая поверхность
Пересечение поверхности и плоскости
Пересечение конической поверхности вращения плоскостью
Пересечение поверхностей
Способ концентрических сфер
Способ эксцентрических сфер
Пересечение поверхностей второго порядка
Развертки гранных поверхностей
Приближенные развертки развертывающихся поверхностей
Условные развертки
неразвертывающихся поверхностей
Аксонометрические проекции
Ортогональная (прямоугольная) диметрическая проекция
Разъемные соединения
Шпилечные соединения
Соединения деталей машин
Классификация резьбовых соединений
Метрическая резьба
Построение винтовой поверхности на чертеже
Специальные резьбы
Шпилька
Соединение болтом упрощенное
Инструмент для завинчивания и отвинчивания
Условие самоторможения в резьбе
Расчет затянутого и дополнительно нагруженного внешней осевой силой болта
Расчет групповых болтов
Расчет резьбы на прочность
Шпоночные соединения
последовательность проектировочного расчета
Расчет на прочность соединений с сегментными шпонками
Рекомендации по конструированию шлицевых соединений

Все основные виды шпоночных соединений можно разделить на две группы: ненапряженные и напряженные.

К ненапряженным относят соединения с призматическими (рис. 54, а), сегментными (рис. 54, б) и круглыми (рис. 54, в) шпонками. Шпоночные пазы на всех валах выполняют дисковыми (рис. 55, а) или торцовыми (рис. 55, б) фрезами. В этих случаях при сборке соединений в деталях не возникает предварительных напряжений для обеспечения центрирования и исключения контактной коррозии ступицы устанавливают на валы с натягом. В ступицах деталей шпоночные пазы можно получить как на фрезерных, так и на долбежных станках. Размеры пазов определяют расчетным путем с учетом требований стандарта.                             

Для сегментных шпонок пазы выполняют, как показано на рис. 51 и 54, б; для клиновых — паз на втулке обрабатывают с уклоном, равным углу наклона шпонки (рис. 54, г); для цилиндрических — получают сверлением (рис. 54, в).

Рис. 54. Виды шпоночных соединений: а, б, в — ненапряженные соединения; г — напряженные соединения

Рис. 55. Изготовление пазов под установку шпонок

Рис. 56

Рис. 57. Соединения клиновыми шпонками

Рис. 58

Соединения, в которых применяют клиновые шпонки, относят к напряженным соединениям. В напряженных соединениях клином, вводимым между валом и ступицей, создаются значительные нормальные силы. Эти силы обеспечивают достаточное трение для передачи вращающего момента.

Для создания фрикционной связи между валом и ступицей используют клиновые шпонки, показанные на рис. 48, е—з (паз выполняют только во втулке). С нижней стороны шпонку (рис. 57, а) обрабатывают в виде вогнутой цилиндрической поверхности с радиусом, равным радиусу вала. Во втулке выполняют уклон. Вращающий момент передается за счет сил трения.

Клиновые фрикционные шпонки применяют для передачи незначительного вращающего момента, а также в тех случаях, когда необходимы частые перестановки деталей на валу в осевом направлении.

Шпонки на лыске (рис. 48, б) устанавливают в пазу втулки с уклоном 1:100. На валу фрезеруют плоскость (вал с лыской). Такая обработка ослабляет вал значительно меньше, чем прямобочные пазы, однако эта шпонка может передать меньший момент, чем врезная.

Основное применение имеют ненапряженные соединения.

Рекомендации по конструированию шпоночных соединений

1. Перепад диаметров ступеней вала с призматическими шпонками назначают из условия свободного прохода детали без удаления шпонок из пазов.

2. При наличии нескольких шпоночных пазов на валу их располагают на одной образующей (рис.59).

3. Из удобства изготовления рекомендуется для разных ступеней одного и того же вала назначать одинаковые по сечению шпонки, исходя из ступени меньшего диаметра (рис.59).

Рис.59

Прочность шпоночных соединений при этом оказывается вполне достаточной, так как силы F1 и F2 действующие на шпонки, составляют:

,

но d 2>d1 ,следовательно, F2 < F1. Это доказывает, что, чем больше диаметр ступени вала, тем меньше усилие F передает шпонка этой ступени при одном и том же вращающем моменте Т.

4. При необходимости двух сегментных шпонок их ставят вдоль вала в одном пазу ступицы. Постановка нескольких шпонок в одном соединении сильно ослабляет  вал, поэтому рекомендуется перейти на шлицевое соединение.

Расчет на прочность соединений с призматическими шпонками

Основным критерием работоспособности шпоночных соединений является прочность. Шпонки выбирают по таблицам ГОСТов в зависимости от диаметра вала, а затем соединения проверяют на прочность. Размеры шпонок и пазов подобраны так, что прочность их на срез и изгиб обеспечивается, если выполняется условие прочности на смятие, поэтому основной расчет шпоночных соединений расчет на смятие. Проверку шпонок на срез в большинстве случаев не проводят. При расчете многошпоночного соединения допускают, что нагрузка распределяется равномерно между всеми шпонками.

Соединения деталей машин