Начертательная геометрия и машиностроительное черчение

МНОГОГРАННЫЕ И КРИВЫЕ ПОВЕРХНОСТИ
Построение проекций пирамиды и ее развертка
Построение проекции прямого круглого цилиндра и его развертка
Построение разверток поверхностей
Построение полной развертки поверхностей треугольной призмы
Построение развертки призмы правильной формы
Комплексный чертеж
Комплексный чертеж прямой
Комплексный чертеж плоскости
Взаимное положение точек и прямых, их принадлежность плоскости
Принадлежность точки и прямой плоскости
Преобразование комплексного чертежа
Проецирование прямой общего положения
Первая и вторая позиционные задачи
Прямая занимает проецирующее положение
Взаимное положение плоскостей
Метрические задачи. Ортогональная проекция прямого угла
Построение взаимно перпендикулярных фигур
Линии наибольшего наклона
Перпендикулярность двух плоскостей
Определение расстояний
Определение расстояния между параллельными фигурами
Определение углов между фигурами
Угол между прямой и плоскостью
Угол между плоскостями
Кривая линия
Понятие поверхности
Точка и линия на поверхности
Коническая и цилиндрическая поверхности
Поверхностью вращения
Принадлежность точки и линии поверхности вращения
Циклическая поверхность
Пересечение поверхности и плоскости
Пересечение конической поверхности вращения плоскостью
Пересечение поверхностей
Способ концентрических сфер
Способ эксцентрических сфер
Пересечение поверхностей второго порядка
Развертки гранных поверхностей
Приближенные развертки развертывающихся поверхностей
Условные развертки
неразвертывающихся поверхностей
Аксонометрические проекции
Ортогональная (прямоугольная) диметрическая проекция
Разъемные соединения
Шпилечные соединения
Соединения деталей машин
Классификация резьбовых соединений
Метрическая резьба
Построение винтовой поверхности на чертеже
Специальные резьбы
Шпилька
Соединение болтом упрощенное
Инструмент для завинчивания и отвинчивания
Условие самоторможения в резьбе
Расчет затянутого и дополнительно нагруженного внешней осевой силой болта
Расчет групповых болтов
Расчет резьбы на прочность
Шпоночные соединения
последовательность проектировочного расчета
Расчет на прочность соединений с сегментными шпонками
Рекомендации по конструированию шлицевых соединений

Метрическая резьба является основной крепежной резьбой.

Метрическая резьба (см. табл.1) является основным типом крепежной резьбы. Профиль резьбы установлен ГОСТ 9150–81 и представляет собой равносторонний треугольник с углом профиля = 60°. Профиль резьбы на стержне отличается от профиля резьбы в отверстии величиной притупления его вершин и впадин. Основными параметрами метрической резьбы являются: номинальный диаметр – d(D) и шаг резьбы – Р, устанавливаемые ГОСТ 8724–81 в миллиметрах.

Метрические   резьбы   бывают   с   крупным   и   мелким   шагом (табл. 2). По ГОСТ 8724–81 каждому номинальному размеру резьбы с крупным шагом соответствует несколько мелких шагов. Резьбы с мелким шагом применяются в тонкостенных соединениях для увеличения их герметичности, для осуществления регулировки в приборах точной механики и оптики, с целью увеличения сопротивляемости деталей самоотвинчиванию. В случае, если диаметры и шаги резьб не могут удовлетворить функциональным и конструктивным требованиям, введен СТ СЭВ 183–75 «Резьба метрическая для приборостроения». Если одному диаметру соответствует несколько значений шагов, то в первую очередь применяются большие шаги. Диаметры и шаги резьб, указанные в скобках, по возможности не применяются.

В случае применения конической метрической (см. табл.1) резьбы с конусностью 1:16 профиль резьбы, диаметры, шаги и основные размеры установлены ГОСТ 25229–82. При соединении наружной конической резьбы с внутренней цилиндрической по ГОСТ 9150–81 должно обеспечиваться ввинчивание наружной конической резьбы на глубину не менее 0,8.

Таблица 2. Метрическая резьба (размеры, мм)

d

Резьба с крупным шагом

С мелким шагом

p

d1

d2

p

d1

<h

6

1

4,918

5,350

0,75

5,188

5,513

8

1,25

6,647

7,188

1

6,918

7,350

10

1,5

8,376

9,026

1,25

8,647

9,188

12

1,75

10,106

10,863

10,647

11,188

(14)

2

11,835

12,701

1,5

12,376

13,026

16

2

13,835

14,701

1,5

14,376

17,026

(18)

2,5

15,294

16,376

1,5

16,376

1-7,026

20

2,5

17,294

18,376

1,5

18,376

19,026

(22)

2,5

19,294

20,376

1,5

20,376

21,026

24

3

20,752

22,051

2

21,835

22,701

(27)

3

23,752

25,051

2

27,835

28,701

Примечание. В таблице приняты следующие обозначения: d — наружный диаметр резьбы (болта);

р — шаг резьбы; d1 — внутренний диаметр наружной резьбы; d2 — средний диаметр наружной резьбы.

Дюймовая резьба (см. рис. 6, б) относится к крепежной резьбе.

В настоящее время не существует стандарт, регламентирующий основные размеры дюймовой резьбы. Ранее существовавший ОСТ НКТП 1260 отменен, и применение дюймовой резьбы в новых разработках не допускается. В СНГ ее применяют только для резьбовых деталей старых, а также импортных машин (США и др.). Дюймовая резьба характеризуется тем, что имеет треугольный профиль с углом = 55°, а диаметр измеряется в дюймах, шаг — числом ниток резьбы на длине в 1".

Эта резьба была стандартизована для наружных диаметров d= 3/16" - 4" и числом ниток на 1" от 28 до 3. При обозначении дюймовой резьбы наружный диаметр указывают в дюймах.

Трубную   цилиндрическую (рис.6,в) резьбу используют как крепежно-уплотняющую. В соответствии с ГОСТ 6367–81 трубная цилиндрическая резьба имеет профиль дюймовой резьбы, т.е. равнобедренный треугольник с углом при вершине, равным 55° (см. табл.1). Для лучшего уплотнения резьбу выполняют с закругленным треугольным профилем без зазоров по выступам и впадинам. Условное обозначение резьбы дается по внутреннему диаметру (в дюймах) трубы, на которой она нарезана.

Резьба стандартизована для диаметров от 1/16" до 6" при числе шагов z от 28 до 11. Номинальный размер резьбы условно отнесен к внутреннему диаметру трубы (к величине условного прохода). Так, резьба с номинальным диаметром 1 мм имеет диаметр условного прохода 25 мм, а наружный диаметр 33,249 мм.

Трубную резьбу применяют для соединения труб, а также тонкостенных деталей цилиндрической формы. Такого рода профиль (55°) рекомендуют при повышенных требованиях к плотности (непроницаемости) трубных соединений. Применяют трубную резьбу при соединении цилиндрической резьбы муфты с конической резьбой труб, так как в этом случае отпадает необходимость в различных уплотнениях.

Трубную  коническую (рис.6,д) резьбу используют как крепежно-уплотняющую.  

Параметры и размеры трубной конической резьбы определены ГОСТ 6211–81, в соответствии с которым профиль резьбы соответствует профилю дюймовой резьбы (см. табл.1.2.1). Резьба стандартизована для диаметров от 1/16" до 6" (в основной плоскости размеры резьбы соответствуют размерам трубной цилиндрической резьбы).

Нарезаются   резьбы   на  конусе с углом   конусности  = 1°47'24" (как и для метрической конической резьбы), что соответствует конусности 1:16.

Конические резьбы обеспечивают герметичность соединения резьбовых деталей без специальных уплотнений. Применение конической резьбы позволяет резко уменьшить время (угол относительного поворота винта и гайки) завинчивания и отвинчивания, что часто имеет решающее значение для быстроразборных соединений. Применяется резьба для резьбовых соединений топливных, масляных, водяных и воздушных трубопроводов машин и станков. Для возможности свертывания конических резьб с цилиндрическими, биссектриса угла профиля конусной резьбы по ГОСТ перпендикулярна оси.

Прямоугольная резьба (см. рис.6, ж) относится к резьбам для передачи движений под нагрузкой; имеет прямоугольный или квадратный профиль; диаметр и шаг измеряют в миллиметрах. Прямоугольная резьба не стандартизована и применяется сравнительно редко, так как наряду с преимуществами, заключающимися в более высоком коэффициенте полезного действия, чем у трапецеидальной резьбы, она менее прочна и сложнее  в производстве. Ее заменяют трапецеидальной — более удобной в изготовлении. Применяется при изготовлении винтов, домкратов и ходовых винтов.

Трапецеидальную резьбу (см. рис.6, з) широко применяют в передачах винт-гайка. Она имеет симметричный трапецеидальный профиль с углом профиля = 30°. (см. табл.1). Для червяков червячных передач угол профиля = 40°. Основные размеры диаметров и шагов трапецеидальной однозаходной резьбы для диаметров от 10 до 640 мм устанавливают ГОСТ 9481–81. По сравнению с прямоугольной трапецеидальная резьба при одних и тех же габаритах имеет большую прочность, более технологична в изготовлении. Трапецеидальная резьба применяется для преобразования вращательного движения в поступательное при значительных нагрузках и может быть одно- и многозаходной (ГОСТ 24738–81 и 24739–81), а также правой и левой. Трапецеидальная резьба при использовании гайки, разъемной по осевой плоскости (например, у ходовых винтов станков), позволяет выбирать зазоры путем радиального сближения половин гайки при ее изнашивании.

Размеры некоторых трапецеидальных резьб приведены в табл. 3. При обозначении указывают тип, наружный диаметр и шаг резьбы в миллиметрах.

Таблица 3. Трапецеидальная резьба (размеры, мм)

d

Р

d2

d1

d

Р

d2

d1

16

2 4

15

14

13,5

11,5

50

3

8

12

48,5

46

44

46,5

41

37

20

2 4

19

18

17,5

15,5

(55)

3

8

12

53,5

51

49

51,5

46

42

3

25

23,5

3

58,3

56,5

26

5

23,5

20

60

8

56

51

8

22

17

12

54

47

3

30,5

28,5

4

68

65,5

32

6

29

25

(70)

10

65

59

10

27

21

16

62

53

Упорную резьбу (см. рис. 6, и) применяют в нажимных винтах с большой односторонней осевой нагрузкой. Упорная резьба, стандартизованная ГОСТ 24737–81, имеет профиль неравнобокой трапеции, одна из сторон которой наклонена к вертикали под углом 3°, т.е. рабочая сторона профиля, а другая – под углом 30° (см. табл.1). Форма профиля и значение диаметров шагов для упорной однозаходной резьбы устанавливает ГОСТ 10177–82. Резьба стандартизована для диаметров от 10 до 600 мм с шагом от 2 до 24 мм и применяется при больших односторонних усилиях, действующих в осевом направлении.

Закругление (см. размер е, рис. 6, и) повышает прочность винта. Условное обозначение упорной резьбы для наружного диаметра 80 мм и шага 16 мм — S 80 х 16, т. е. аналогично обозначению трапецеидальной резьбы.

Круглая резьба. Круглая резьба стандартизована. Профиль круглой резьбы образован дугами, связанными между собой участками прямой линии. Угол между сторонами профиля = 30° (см. табл.1). Резьба применяется ограниченно: для водопроводной арматуры, в отдельных случаях для крюков подъемных кранов, а также в условиях воздействия агрессивной среды.

Резьбовые соединения имеют ряд существенных достоинств:

- высокая надёжность;

- удобство сборки-разборки;

- простота конструкции;

- дешевизна (вследствие стандартизации);

- технологичность;

- возможность регулировки силы сжатия.

Недостатки резьбовых соединений:

- концентрация напряжений во впадинах резьбы;

- низкая вибрационная стойкость (самоотвинчивание при вибрации).

Резьбы могут быть изготовлены:

- нарезанием слесарным инструментом — метчиками, плашками (как вручную, так и на станках). Для нарезания наружной резьбы используют различные резцы, плашки, резьбовые гребенки и фрезы, а для внутренней резьбы – метчики. Этот метод применяют в индивидуальном производстве и при ремонтных работах;

- нарезанием резцом на токарно-винторезном станке или на специальных болтонарезных станках;

- фрезерованием на специальных резьбофрезерных станках. Применяют для нарезки винтов больших диаметров с повышенными требованиями к точности резьбы (ходовые и грузовые винты, резьбы на валах и т. д.);

- накаткой на специальных резьбонакатных станках. Этим высокопроизводительным и дешевым способом изготовляют большинство резьб стандартных крепежных деталей (болты, винты и т. д.). Накатка существенно упрочняет резьбовые детали;

- отливкой чугунных, пластмассовых, стеклянных деталей и деталей из цветных сплавов;

- выдавливанием для тонкостенных деталей (например, из латуни).

Условное изображение резьбы. ГОСТ 2.311–68

Соединения деталей машин