Начертательная геометрия и машиностроительное черчение

МНОГОГРАННЫЕ И КРИВЫЕ ПОВЕРХНОСТИ
Построение проекций пирамиды и ее развертка
Построение проекции прямого круглого цилиндра и его развертка
Построение разверток поверхностей
Построение полной развертки поверхностей треугольной призмы
Построение развертки призмы правильной формы
Комплексный чертеж
Комплексный чертеж прямой
Комплексный чертеж плоскости
Взаимное положение точек и прямых, их принадлежность плоскости
Принадлежность точки и прямой плоскости
Преобразование комплексного чертежа
Проецирование прямой общего положения
Первая и вторая позиционные задачи
Прямая занимает проецирующее положение
Взаимное положение плоскостей
Метрические задачи. Ортогональная проекция прямого угла
Построение взаимно перпендикулярных фигур
Линии наибольшего наклона
Перпендикулярность двух плоскостей
Определение расстояний
Определение расстояния между параллельными фигурами
Определение углов между фигурами
Угол между прямой и плоскостью
Угол между плоскостями
Кривая линия
Понятие поверхности
Точка и линия на поверхности
Коническая и цилиндрическая поверхности
Поверхностью вращения
Принадлежность точки и линии поверхности вращения
Циклическая поверхность
Пересечение поверхности и плоскости
Пересечение конической поверхности вращения плоскостью
Пересечение поверхностей
Способ концентрических сфер
Способ эксцентрических сфер
Пересечение поверхностей второго порядка
Развертки гранных поверхностей
Приближенные развертки развертывающихся поверхностей
Условные развертки
неразвертывающихся поверхностей
Аксонометрические проекции
Ортогональная (прямоугольная) диметрическая проекция
Разъемные соединения
Шпилечные соединения
Соединения деталей машин
Классификация резьбовых соединений
Метрическая резьба
Построение винтовой поверхности на чертеже
Специальные резьбы
Шпилька
Соединение болтом упрощенное
Инструмент для завинчивания и отвинчивания
Условие самоторможения в резьбе
Расчет затянутого и дополнительно нагруженного внешней осевой силой болта
Расчет групповых болтов
Расчет резьбы на прочность
Шпоночные соединения
последовательность проектировочного расчета
Расчет на прочность соединений с сегментными шпонками
Рекомендации по конструированию шлицевых соединений

Ортогональная (прямоугольная) диметрическая проекция

Ортогональная диметрическая проекция (диметрия) является ортогональной аксонометрической проекцией при u = w, v = 0,5u. По формуле (14.1) получим: u = w = 0,94: v = 0,47. По формуле (14.2) определим, что угол между осями x' и y' равен 97010', угол между осями x' и y' равен 131025'. 

Построение диметрии точки выполняется так же, как показано на рис. 14.2, 14.3. Коэффициенты искажения: u = w = 0,94; v = 0,47. Такая диметрия называется точной (теоретической). Точно так же, как в изометрии, вводится масштаб приведения, который в этом случае равен 1,06 : 1, так как 0,94×1,06 » 1. Коэффициенты искажения при этом u = w = 1, v = 0,5. Диметрия, выполненная в масштабе 1,06 : 1, называется приведенной (практической) диметрией.

На рис. 14.9 показана диметрия куба со срезанной вершиной, комплексный чертеж которого приведен на рис. 14.4. Рядом с диметрией дана схема расположения диметрических осей с указанием коэффициентов искажения и масштаба приведения. На рис. 14.10 показана диметрия кривой k, комплексный чертеж которой приведен на рис. 14.6.

Окружности t, n, k, расположенные в плоскостях Oxy, Oxz, Oyz или им параллельных плоскостях, проецируются в эллипсы t', n', k' (рис. 14.11). Большие диаметры равны 1,06d, так как масштаб приведения 1,06 : 1. Малый диаметр у t' и k' равен 0,35d, у n' – 0,94d (принимаем без вывода).

Диметрия окружности, принадлежащей плоскости общего положения строится так же, как и изометрия. Большой диаметр эллипса равен 1,06d, где d – диаметр окружности.

В построении изометрии и диметрии фигуры много общего, так как изометрия и диметрия - это частные случаи (конкретные виды) прямоугольной аксонометрической проекции, но есть и отличия, вызванные тем, что у изометрии и диметрии разные коэффициенты искажения по осям. 

 


В курсе инженерной графики при выполнении изометрии и диметрии деталей, для повышения наглядности делается вырез части детали. На рис. 14.12, 14.13 показаны изометрия и диметрия куба с цилиндрическим отверстием. Направление штриховки в каждой из плоскостей определяется по треугольнику штриховки, который добавлен к изображению осей. Вершины треугольников штриховки лежат на осях и удалены от начала координат на расстояния пропорциональные коэффициентам искажения. В изометрии эти расстояния равны между собой (u = v = w = 1), в диметрии расстояние по оси y в два раза меньше чем по осям x и z (u = w =1, v = 0.5).

 

 

 

 

 

 

 

 

 

 

Соединения деталей машин