Начертательная геометрия и машиностроительное черчение

МНОГОГРАННЫЕ И КРИВЫЕ ПОВЕРХНОСТИ
Построение проекций пирамиды и ее развертка
Построение проекции прямого круглого цилиндра и его развертка
Построение разверток поверхностей
Построение полной развертки поверхностей треугольной призмы
Построение развертки призмы правильной формы
Комплексный чертеж
Комплексный чертеж прямой
Комплексный чертеж плоскости
Взаимное положение точек и прямых, их принадлежность плоскости
Принадлежность точки и прямой плоскости
Преобразование комплексного чертежа
Проецирование прямой общего положения
Первая и вторая позиционные задачи
Прямая занимает проецирующее положение
Взаимное положение плоскостей
Метрические задачи. Ортогональная проекция прямого угла
Построение взаимно перпендикулярных фигур
Линии наибольшего наклона
Перпендикулярность двух плоскостей
Определение расстояний
Определение расстояния между параллельными фигурами
Определение углов между фигурами
Угол между прямой и плоскостью
Угол между плоскостями
Кривая линия
Понятие поверхности
Точка и линия на поверхности
Коническая и цилиндрическая поверхности
Поверхностью вращения
Принадлежность точки и линии поверхности вращения
Циклическая поверхность
Пересечение поверхности и плоскости
Пересечение конической поверхности вращения плоскостью
Пересечение поверхностей
Способ концентрических сфер
Способ эксцентрических сфер
Пересечение поверхностей второго порядка
Развертки гранных поверхностей
Приближенные развертки развертывающихся поверхностей
Условные развертки
неразвертывающихся поверхностей
Аксонометрические проекции
Ортогональная (прямоугольная) диметрическая проекция
Разъемные соединения
Шпилечные соединения
Соединения деталей машин
Классификация резьбовых соединений
Метрическая резьба
Построение винтовой поверхности на чертеже
Специальные резьбы
Шпилька
Соединение болтом упрощенное
Инструмент для завинчивания и отвинчивания
Условие самоторможения в резьбе
Расчет затянутого и дополнительно нагруженного внешней осевой силой болта
Расчет групповых болтов
Расчет резьбы на прочность
Шпоночные соединения
последовательность проектировочного расчета
Расчет на прочность соединений с сегментными шпонками
Рекомендации по конструированию шлицевых соединений

ПОСТРОЕНИЕ ПЕРЕСЕЧЕНИЙ ФИГУР

Пересечение поверхности и плоскости

Линия пересечения поверхности с плоскостью представляет собой плоскую кривую, называемую сечением. Точки этой кривой можно рассматривать как точки пересечения линий поверхности с плоскостью или прямых плоскости с поверхностью. Отсюда следует два варианта построения сечения:

1) выбираем конечное число линий на поверхности и определяем точки пересечения их с плоскостью;

2) выделяем конечное число прямых на плоскости и строим точки пересечения их с поверхностью.

 Заметим, что возможно решение, представляющее собой комбинацию этих вариантов. В любом случае построение сечения сводится к многократному применению алгоритма решения задачи на пересечение линии и поверхности.

Определение проекций линий сечения рекомендуется начинать с построения его опорных (характерных) точек. К ним относятся точки, расположенные на очерковых образующих поверхности (они определяют границы видимости проекций кривой), а также точки, удаленные на экстремальные расстояния от плоскостей проекций. После этого определяют промежуточные точки сечения.

Построение сечения существенно упрощается, если плоскость занимает проецирующее положение. Это связано с тем, что проецирующая плоскость характеризуется собирательным свойством. В этом случае одна из проекций сечения находится на следе плоскости, т.е. известна.

Пример 1. Построить проекции сечения конической поверхности вращения с фронтально-проецирующей плоскостью S (рис. 12.1).

Решение. Заданная плоскость S пересекает исходную поверхность по эллипсу, фронтальная проекция которого расположена на следе этой плоскости. Горизонтальную проекцию сечения строим по точкам в соответствии с задачей на принадлежность линии поверхности (см. рис. 12.1).

Проекцию эллипса на плоскости P1 можно построить также по его большой A1B1 и малой C1D1 осям. Фронтальная проекция малой оси эллипса (точки C2=D2) находится на середине отрезка А2В2.

Пример 2. Построить пересечение многогран-ника плоскостью.

В пересечении гранных поверхностей плос-костями получаются многоугольники. Их вершины определяются как точки пересечения ребер гранных поверхностей с секущей плоскостью.

Многоугольник сечения может быть построен двумя способами:

Вершины многоугольника находятся как точки пересечения прямых (ребер) с секущей плоскостью;

Стороны многоугольника находятся как линии пересечения граней (плоскостей) многогранника с секущей плоскостью.

На (рис. 12.2) показано построение сечение пирамиды плоскостью S.

Секущая плоскость является фронтально - проецирующей, следовательно, все линии, лежащие в этой плоскости, совпадут с фронтальным следом S2 плоскости S. Следовательно, фронтальная проекция 122232 сечения определится при пересечении фронтальных проекций ребер пирамиды со следом S(S)2. Горизонтальные проекции точек 1(11), 2(21) и 3(31) находим из условия принадлежности точек ребрам пирамиды.

Пример 3. Построить линию пересечения цилиндрической поверхности вращения с плоскостью S(S)2 (рис. 12.3).

Решение. Вначале находим опорные точки A(A1, A2), B(B1, B2), C(C1, C2) и D(D1, D2). Точки А и В находятся в пересечении образующих фронтального контура поверхности и плоскости S (вначале определяем A2 и B2, а затем по линиям проекционной связи - A1 и B1). Точки С и D являются точками пересечения горизонтального контура поверхности и плоскости S. На П2 горизонтальный контур совпадает с проекцией оси поверхности вращения, а на П1 является очерком. Тогда, вначале строим C2 и D2, а затем C1 и D1.

Точки 1(11, 12), 2(21, 22), …, 8(81, 82) – это промежуточные точки сечения. Они построены введение промежуточных прямолинейных образующих поверхности. Вначале проводим проекции образующих на П2, например, через точки 12, 22 (образующие – фронтально конкурирующие). На П3 эти образующие проецируются в точки 13 и 23. Горизонтальные проекции образующих построены по двум заданным, как показано на рис. 12.3, отложив соответствующие значения координаты y.

Соединения деталей машин