Начертательная геометрия и машиностроительное черчение

МНОГОГРАННЫЕ И КРИВЫЕ ПОВЕРХНОСТИ
Построение проекций пирамиды и ее развертка
Построение проекции прямого круглого цилиндра и его развертка
Построение разверток поверхностей
Построение полной развертки поверхностей треугольной призмы
Построение развертки призмы правильной формы
Комплексный чертеж
Комплексный чертеж прямой
Комплексный чертеж плоскости
Взаимное положение точек и прямых, их принадлежность плоскости
Принадлежность точки и прямой плоскости
Преобразование комплексного чертежа
Проецирование прямой общего положения
Первая и вторая позиционные задачи
Прямая занимает проецирующее положение
Взаимное положение плоскостей
Метрические задачи. Ортогональная проекция прямого угла
Построение взаимно перпендикулярных фигур
Линии наибольшего наклона
Перпендикулярность двух плоскостей
Определение расстояний
Определение расстояния между параллельными фигурами
Определение углов между фигурами
Угол между прямой и плоскостью
Угол между плоскостями
Кривая линия
Понятие поверхности
Точка и линия на поверхности
Коническая и цилиндрическая поверхности
Поверхностью вращения
Принадлежность точки и линии поверхности вращения
Циклическая поверхность
Пересечение поверхности и плоскости
Пересечение конической поверхности вращения плоскостью
Пересечение поверхностей
Способ концентрических сфер
Способ эксцентрических сфер
Пересечение поверхностей второго порядка
Развертки гранных поверхностей
Приближенные развертки развертывающихся поверхностей
Условные развертки
неразвертывающихся поверхностей
Аксонометрические проекции
Ортогональная (прямоугольная) диметрическая проекция
Разъемные соединения
Шпилечные соединения
Соединения деталей машин
Классификация резьбовых соединений
Метрическая резьба
Построение винтовой поверхности на чертеже
Специальные резьбы
Шпилька
Соединение болтом упрощенное
Инструмент для завинчивания и отвинчивания
Условие самоторможения в резьбе
Расчет затянутого и дополнительно нагруженного внешней осевой силой болта
Расчет групповых болтов
Расчет резьбы на прочность
Шпоночные соединения
последовательность проектировочного расчета
Расчет на прочность соединений с сегментными шпонками
Рекомендации по конструированию шлицевых соединений

Определение углов между фигурами

Фигуры пространства: прямые линии, плоскости, прямые и плоскости могут образовывать между собой углы – геометрические фигуры с соответствующими этим фигурам величинами. Рассмотрим наиболее часто встречающиеся в начертательной геометрии углы. 

Углы между прямыми

Приведем известные из школьного курса стереометрии понятия и определения, необходимые для решения последующих метрических задач:

1) плоский угол – фигура, образованная двумя лучами с общим началом и одной из 

 плоских областей, ограниченной ими;

2) угол между пересекающимися прямыми – величина наименьшего из плоских

 углов, образованных этими прямыми;

3) угол между скрещивающимися прямыми – это угол между пересекающимися

 прямыми, параллельными данным скрещивающимся прямым.

В последнем определении величина угла между двумя скрещивающими прямым не зависит от выбора пары пересекающихся прямых, параллельных им. Рассмотрим несколько задач на определение углов.

Задача. Даны пересекающиеся отрезки АВ и АС (рис. 9.1). Определить угол между ними.

Поскольку искомый угол является плоской фигурой, то решение задачи сводится к определению НВ плоской фигуры. Ее проекционное решение изложено в п. 1. Напомним алгоритм этого решения. Он основан на методе замены плоскостей проекций и применительно к условиям данной задачи может быть следующим:

1) строится линия уровня, например, h(h1,h2 ), принадлежащая плоскости Σ(АВ, АС), при этом h2 // х;

2) строится ось проекции x1^ h1 , что соответствует в пространстве введению новой

 системы плоскостей проекций П1, П4, где П4 ^ h;

3) на П4 строится вырожденная проекция В4С4 плоскости Σ;

4) строится ось проекции x2 // В4С4 , что соответствует в пространстве введению

 новой системы плоскостей проекций П4 , П5 , где П5 // Σ;

5) на П5 строится угол Ð(А5С5 , А5В5 ) = a, который и является искомым.

  Задача. Даны две скрещивающиеся прямые АВ и CD (рис. 9.2). Определить 

угол между ними.

Решение задачи выполним, опираясь на определение угла между скрещивающимися прямыми, приведенное выше, а также учитывая алгоритм проекционного решения предыдущей задачи. Для этих целей переместим одну из прямых, например DC, в положение, когда она, оставаясь параллельной самой себе, будет пересекать другую прямую АВ. Таких положений существует бесчисленное множество. Одно из них, D1C1 (D11C11 , D21C21 ), где D11С11 // D1С1 , D21С21 = D2C2 , показано на КЧ (см. рис. 9.2). В итоге получаем пару пересекающихся прямых АВ Ç D1С1 , угол между которыми может быть определен на основании вышеприведенного проекционного алгоритма. Эту часть решения задачи рекомендуется выполнить самостоятельно.

Рассмотрим еще одно проекционное решение данной задачи. Смысл его заключается в построении такой дополнительной плоскости проекций, на которой ортогональные проекции заданных скрещивающихся прямых суть пересекающиеся

прямые, соответственно параллельные этим скрещивающимся прямым. Угол между такими ортогональными проекциями является искомым. Указанная плоскость проекций перпендикулярна прямой кратчайшего расстояния между заданными скрещивающимися прямыми.

 Задача. Даны скрещивающиеся прямые АВ и CD. Определить угол между ними 

(рис. 9.3).

Проекционное решение этой задачи, в соответствии с предложенной выше схемой, будет следующим:

1) строится ось проекции x1 // C1D1 (x1 можно строить параллельно любой из

 четырех ортогональных проекций прямых АВ и CD), которая вместе с 

 плоскостями П1 , П4 образует новую систему плоскостей проекций, такую, что

 П4 // CD;

2) на П4 строятся дополнительные проекции А4В4 , C4D4 прямых АВ и CD, при этом

 C4D4 есть НВ отрезка CD;

3) строится ось проекции x2 ^ C4D4 , которая вместе с П4 , П5 образует новую

 систему плоскостей проекций, такую, что П5 ^CD;

4) на П5 строятся дополнительные проекции А5В5 и C5 = D5 прямых АВ и CD;

5) строится ось проекции x3 // А5В5 , которая

 вместе с П5, П6 образует новую систему

 плоскостей проекций, такую, что П6 // AB;

6) на П6 строятся дополнительные проекции

 А6В6 и C6D6 , представляющих собой НВ

 прямых АВ и CD и образующих между собой

 гол a, являющийся решением задачи.

 

 

 

 

 

 

 

Соединения деталей машин