Начертательная геометрия и машиностроительное черчение

МНОГОГРАННЫЕ И КРИВЫЕ ПОВЕРХНОСТИ
Построение проекций пирамиды и ее развертка
Построение проекции прямого круглого цилиндра и его развертка
Построение разверток поверхностей
Построение полной развертки поверхностей треугольной призмы
Построение развертки призмы правильной формы
Комплексный чертеж
Комплексный чертеж прямой
Комплексный чертеж плоскости
Взаимное положение точек и прямых, их принадлежность плоскости
Принадлежность точки и прямой плоскости
Преобразование комплексного чертежа
Проецирование прямой общего положения
Первая и вторая позиционные задачи
Прямая занимает проецирующее положение
Взаимное положение плоскостей
Метрические задачи. Ортогональная проекция прямого угла
Построение взаимно перпендикулярных фигур
Линии наибольшего наклона
Перпендикулярность двух плоскостей
Определение расстояний
Определение расстояния между параллельными фигурами
Определение углов между фигурами
Угол между прямой и плоскостью
Угол между плоскостями
Кривая линия
Понятие поверхности
Точка и линия на поверхности
Коническая и цилиндрическая поверхности
Поверхностью вращения
Принадлежность точки и линии поверхности вращения
Циклическая поверхность
Пересечение поверхности и плоскости
Пересечение конической поверхности вращения плоскостью
Пересечение поверхностей
Способ концентрических сфер
Способ эксцентрических сфер
Пересечение поверхностей второго порядка
Развертки гранных поверхностей
Приближенные развертки развертывающихся поверхностей
Условные развертки
неразвертывающихся поверхностей
Аксонометрические проекции
Ортогональная (прямоугольная) диметрическая проекция
Разъемные соединения
Шпилечные соединения
Соединения деталей машин
Классификация резьбовых соединений
Метрическая резьба
Построение винтовой поверхности на чертеже
Специальные резьбы
Шпилька
Соединение болтом упрощенное
Инструмент для завинчивания и отвинчивания
Условие самоторможения в резьбе
Расчет затянутого и дополнительно нагруженного внешней осевой силой болта
Расчет групповых болтов
Расчет резьбы на прочность
Шпоночные соединения
последовательность проектировочного расчета
Расчет на прочность соединений с сегментными шпонками
Рекомендации по конструированию шлицевых соединений

Метрические задачи. Ортогональная проекция прямого угла

 К метрическим задачам, изучаемым в учебном курсе начертательной  геометрии, относятся задачи, в которых требуется определить метрические характеристики заданной фигуры – длину, угол, площадь и др., а также метрические свойства и характеристики, обусловленные расположением фигуры относительно плоскостей проекций или относительно другой (других) фигур – перпендикулярность, расстояние и угол. Проекционное решение таких задач основывается на метрических свойствах ортогонального проецирования на плоскость и обратимости чертежа Монжа. Метрическими свойствами ортогонального проецирования являются существующие зависимости между длинами отрезка прямой линии и его проекции, а также между величинами угла и его проекции (см. п. 1). Из этих зависимостей вытекает теорема о проецировании прямого угла: для того, чтобы прямой угол проецировался в прямой угол, необходимо и достаточно, чтобы одна его сторона была параллельна плоскости проекций, а другая не перпендикулярна этой плоскости. Рассмотрим геометрическое доказательство. Оно позволяет более наглядно увидеть числовую и проекционную взаимосвязь двух геометрических фигур – прямого угла и его проекции.

Необходимость. Пусть ÐBAC = ÐB1A1C1 = 90° (рис. 6.1). Докажем, что АС // П1. Предположим, что АВ не параллельна П1 (если AB // П1, то плоскость угла BAC параллельна П1 и по свойству 9 ортогонального проецирования имеем:

ÐBAC =ÐB1A1C1 = 90°). Поскольку ÐB1A1C1 Ì П1, ÐB1A1C1 = 90° и AA1 ^ П1, как проецирующая линия, то плоскости S(A1B1,AA1) и D(A1C1, AA1) взаимно перпендикулярны. В этом случае АВ и AA1 суть наклонная и ее ортогональная проекция на плоскости D. Так как AC Ì D и АС ^ АВ, то по теореме о трех перпендикулярах имеем АС ^ AA1, т.е. АС // П1.

 Достаточность. Пусть ÐВАС = 90°, АС // П1. Докажем, что Ð B1A1C1 = 90°. При данных условиях имеем: AB наклонная, А1В1 – ее проекция на П1. По теореме о трех перпендикулярах имеем: (АС ^ АВ, АС // П1 ) Þ АС ^ А1В1. Из АС // П1 следует АС // А1С1. Следовательно, А1С1 ^ А1В1 и ÐB1A1C1 = 90°.

 Из обратимости комплексного чертежа (КЧ) следует, что если А2В2, А1В1 и С2В2, С1В1 – проекции пересекающихся прямых АВ и СВ, то при выполнении одного из двух следующих проекционных условий:

1) А1В1 ^ С1В1 и А2В2 // x либо С2В2 // x;

  2) А2В2 ^ С2В2 и А1В1 // x либо С1В1 // x

в пространстве имеет место перпендикулярность АВ ^СВ (рис. 6.2).

 Метрические задачи курса начертательной геометрии можно условно разделить на следующие группы:

1) построение взаимно перпендикулярных фигур:

 прямых, плоскостей, прямых и плоскостей;

2) определение длин отрезков (расстояний) и

 натуральной величины (НВ) плоской фигуры;

3) определение углов между фигурами.

  Рассмотрим примеры решений на КЧ метрических задач в каждой группе.

Соединения деталей машин