Начертательная геометрия и машиностроительное черчение

МНОГОГРАННЫЕ И КРИВЫЕ ПОВЕРХНОСТИ
Построение проекций пирамиды и ее развертка
Построение проекции прямого круглого цилиндра и его развертка
Построение разверток поверхностей
Построение полной развертки поверхностей треугольной призмы
Построение развертки призмы правильной формы
Комплексный чертеж
Комплексный чертеж прямой
Комплексный чертеж плоскости
Взаимное положение точек и прямых, их принадлежность плоскости
Принадлежность точки и прямой плоскости
Преобразование комплексного чертежа
Проецирование прямой общего положения
Первая и вторая позиционные задачи
Прямая занимает проецирующее положение
Взаимное положение плоскостей
Метрические задачи. Ортогональная проекция прямого угла
Построение взаимно перпендикулярных фигур
Линии наибольшего наклона
Перпендикулярность двух плоскостей
Определение расстояний
Определение расстояния между параллельными фигурами
Определение углов между фигурами
Угол между прямой и плоскостью
Угол между плоскостями
Кривая линия
Понятие поверхности
Точка и линия на поверхности
Коническая и цилиндрическая поверхности
Поверхностью вращения
Принадлежность точки и линии поверхности вращения
Циклическая поверхность
Пересечение поверхности и плоскости
Пересечение конической поверхности вращения плоскостью
Пересечение поверхностей
Способ концентрических сфер
Способ эксцентрических сфер
Пересечение поверхностей второго порядка
Развертки гранных поверхностей
Приближенные развертки развертывающихся поверхностей
Условные развертки
неразвертывающихся поверхностей
Аксонометрические проекции
Ортогональная (прямоугольная) диметрическая проекция
Разъемные соединения
Шпилечные соединения
Соединения деталей машин
Классификация резьбовых соединений
Метрическая резьба
Построение винтовой поверхности на чертеже
Специальные резьбы
Шпилька
Соединение болтом упрощенное
Инструмент для завинчивания и отвинчивания
Условие самоторможения в резьбе
Расчет затянутого и дополнительно нагруженного внешней осевой силой болта
Расчет групповых болтов
Расчет резьбы на прочность
Шпоночные соединения
последовательность проектировочного расчета
Расчет на прочность соединений с сегментными шпонками
Рекомендации по конструированию шлицевых соединений

Проецирование прямой общего положения в точку на новую плоскость проекций

Придание фигурам частного положения относительно плоскостей проекций значительно облегчает решение многих задач. Для того, чтобы прямая общего положения в новой системе плоскостей проекций стала проецирующей прямой, необходимо, чтобы новая плоскость проекций была перпендикулярна прямой. Прямая на эту плоскость спроецируется в точку. Плоскость, перпендикулярная прямой общего положения, является плоскостью общего положения. Введение такой плоскости в качестве новой плоскости проекций невозможно, так как новая плоскость проекций должна быть перпендикулярна одной из старых плоскостей проекций. Таким образом, решить задачу проецирования прямой общего положения в точку, одной заменой плоскости проекций нельзя. Поэтому попытаемся решить эту задачу сначала для прямой частного положения, а именно для прямой уровня.


Пусть h(h1, h2) – горизонталь (рис. 4.5). Введем новую плоскость проекций П4 перпендикулярно h. Поскольку h параллельна П1, то П4 будет перпендикулярна П1. Плоскость П4 может быть взята в качестве новой плоскости проекций и на нее h спроецируется в точку. Новая ось x14 перпендикулярна проекции h1, так как h1 параллельна h и, значит, перпендикулярна П4 и x14. Для построения новой проекции горизонтали, построим новые проекции двух ее точек 1 и 2. Новые проекции этих точек, построенные по правилу замены плоскостей проекций, совпадают. Так как точки 1 и 2 взяты произвольно, то проекции остальных точек горизонтали тоже совпадут, т.е. горизонталь проецируется на П4 в точку.

Используя решение задачи проецирования линии уровня в точку, можно выполнить проецирование прямой общего положения m в точку (рис. 4.6). Введем новую плоскость проекций П4 параллельно прямой m и перпендикулярно П1. Новая ось x14 параллельна горизонтальной проекции m1. По новым проекциям двух произвольных точек 1 и 2 прямой m, находим m4. В новой системе плоскостей (П1П4) прямая m является линией уровня, она параллельна П4 (при этом m1 параллельна x14). Теперь, используя решение предыдущей задачи (рис. 4.5), проецируем прямую m в точку. Для этого вводим новую плоскость проекций П5 перпендикулярно прямой m и перпендикулярно П4. Прямая m на П5 проецируется в точку. В новой системе плоскостей проекций (П4П5) прямая m является проецирующей прямой. 

4.4. Проецирование плоскости общего положения в прямую на новую плоскость проекций. Нахождение натуральной величины плоской фигуры

Если спроецировать какую – либо прямую m, принадлежащую плоскости общего положения S, в точку, то плоскость S спроецируется на эту же плоскость проекций в прямую линию. Действительно, прямая m перпендикулярна плоскости проекций и, значит, плоскость S проходит через перпендикуляр к плоскости проекций и тоже ей перпендикулярна. Плоскость S является проецирующей плоскостью и на плоскость проекций проецируется в прямую. Если m – прямая общего положения, то для проецирования ее в точку потребуется две замены плоскостей проекций (рис. 4.6). Если m – прямая уровня, то для ее проецирования в точку потребуется одна замена плоскостей проекций (рис. 4.5).

Пусть S – плоскость общего положения, заданная треугольником АВС (рис. 4.7). В плоскости S проведем горизонталь h, спроецируем горизонталь h в точку h4 на плоскость П4 (x14 ^ h1, П4 ^ h), построим новые проекции точек А4, В4, С4. Плоскость S проецируется в прямую, проходящую через точки А4, В4, С4. Плоскость S в системе (П1П4) является проецирующей плоскостью, она перпендикулярна П4. Треугольник АВС проецируется на П4 в отрезок В4С4.

Для нахождения натуральной величины треугольника АВС введем плоскость проекций П5 параллельно плоскости треугольника и перпендикулярно П4. Новая ось x45 параллельна отрезку D4C4 (в противном случае S и П5 пересекутся). Треугольник АВС проецируется на плоскость П5 в натуральную величину DА5В5С5 = DАВС. Аналогично находится натуральная величина любой плоской фигуры. Плоскость S в системе (П4П5) является плоскостью уровня.

Если необходимо построить в плоскости S какую – либо фигуру, то выполнить это построение в плоскости общего положения трудно. В этом случае проводятся построения, показанные на рис. 4.7. На П5 строится натуральная величина фигуры. Затем находятся остальные проекции этой фигуры. На рис. 4.7 по проекции D5 (одна точка натуральной величины фигуры) найдены остальные проекции этой точки. Проекция D4 принадлежит прямой, в которую проецируется плоскость S. Последовательность построений показана стрелками. Правило замены плоскостей проекций справедливо и в этом случае. Равные отрезки помечены одинаково. Таким способом можно построить, например, окружность, вписанную в треугольник ABC. На плоскости П5 строится окружность, вписанная в треугольник А5В5С5, а затем находятся остальные проекции ряда точек окружности так же, как для точки D5. Горизонтальная и фронтальная проекции этой окружности – эллипсы.

В случае, когда дана проецирующая плоскость, построений связанных с натуральной величиной фигуры, конечно, меньше, так как плоскость уже проецируется в прямую линию. На рис. 4.8 показано построение квадрата принадлежащего горизонтально проецирующей плоскости. Пусть дана горизонтально проецирующая плоскость S(S1) и две точки этой плоскости А(А1, А2) и В(В1, В2). Необходимо построить квадрат ABCD в плоскости S. Соединяем отрезками проекции А2,В2 и А1,В1. Получили проекции стороны квадрата. Вводим плоскость П4 // S1 (x14 // S1). Строим новую проекцию А4В4. Достраиваем к отрезку А4В4 квадрат А4В4С4D4. Проекции С1 и D1 принадлежат S1. Проекции С2 и D2 строятся по правилам замены плоскостей проекций. У этой задачи есть второе решение – квадрат симметричный построенному относительно прямой (АВ). Это второе решение можно построить не пользуясь проекцией на плоскость П4 сразу на плоскостях П2 и П1.

 

 

 

 

 

 

Соединения деталей машин