Учебное пособие по экоинформатике

Управление когнитивными системами

В современном понимании экология претендует на роль науки, связывающей между собой все области знаний, это «наука обо всем». Экология появляется там, где есть человек: на необитаемой планете может быть биология, география, геология, но только не экология. Воздействие человека на природу, а природы и общества на человека включает социальные, экономические и другие составляющие. Собственно, любую проблему, стоящую перед человечеством, можно назвать экологической. Поэтому к решению экологических задач необходим системный подход.

В качестве базового метода при исследовании комплексных задач предлагается использовать теорию ориентированных графов, которая позволяет связать воедино количественные и качественные характеристики исследуемого объекта. Модели, построенные при помощи орграфов, позволяют прогнозировать реакцию системы на воздействие, выбирать наиболее эффективные решения по управлению системой.

ЧАСТЬ 1

Основные понятия системного анализа

Под системой понимают совокупность взаимосвязанных элементов, объединенных единством цели (или назначения) и функциональной целостностью. При этом свойства самой системы не сводятся к сумме свойств составляющих ее элементов. Любая система образуется в результате взаимодействия составляющих ее элементов. Дифференцирование Задача. Исходя из определения производной, найти .

Набор определенных значений характеристик системы называется состоянием системы. Исследование больших систем основывается на анализе и прогнозировании состояний системы на определенный момент времени.

Состав системы – это набор элементов, из которых состоит система.

Структура – это связи и закономерности взаимодействия между элементами системы. Естественно, что структура системы может меняться в процессе ее функционирования (как, впрочем, и состав, но это происходит реже).

Для нормального функционирования системы важны следующие свойства:

целостность – внутреннее единство. На любое воздействие извне система реагирует как единое целое, нельзя воздействовать на какой-либо элемент системы так, чтобы это не вызвало реакцию остальных элементов системы (хотя эта реакция может быть и достаточно мала)

равновесие (способность сохранять текущее состояние или стабильно развиваться без воздействия извне)

устойчивость (малое внешнее воздействие приводит к малому отклонению в состоянии)

адаптивность: а) пассивная – реакция на внешнее воздействие (способность находить новое равновесное состояние после воздействия извне); б) активная – ответное воздействие на внешнюю среду

Классификация систем

Многообразие систем весьма велико, и признаков для их классификации также чрезвычайно много. По субстанциональному признаку (т.е. по основе), выделяют 4 класса:

Искусственные системы – это системы, созданные человеком. Диапазон их реализаций очень широк: от простейших механизмов до сложных комплексов.

Естественные системы – это системы, объективно существующие в действительности, в живой и неживой природе и обществе: организм, популяция, общество, вселенная и т.п.

Концептуальные системы – это системы, которые выражают образцовую действительность. Чаще всего такие системы выражают идеальную цель, к которой стремится в своем развитии система.

Виртуальные системы – это не существующие в действительности модельные или мыслительные представления реальных объектов, явлений, процессов.

Моделирование систем В большинстве случаев мы не можем экспериментировать с системой. Для этих целей используются модели. Под моделью будем понимать специально синтезированный для удобства исследования образ реального объекта (системы), который обладает необходимой степенью подобия исходному объекту, отвечает целям исследования, сформулированным субъектом исследования, и характеризующийся комплексом элементов, определенным образом взаимосвязанным и отражающим функционирование и развитие объекта исследования (системы).

Графы Принято считать, что начало теории графов было положено Л. Эйлером в 1736 году в его знаменитом рассуждении о кенигсбергских мостах.

Виды ориентированных графов Полученная с помощью орграфа модель отражает взаимодействие вершин. Однако самым интересным с точки зрения исследователя является характер взаимодействия и его количественные характеристики. Для того, чтобы их можно было отразить в орграфе, условимся, что каждому фактору в каждый момент времени соответствует некоторое числовое значение – характеристика. Например, если в исследовании учитывается здоровье населения города, то значение соответствующей вершины орграфа можно определять, как относительное число случаев заболевания горожан за определенный период времени.

Функциональный орграф. Весовые коэффициенты могут изменяться со временем. В этом случае они задаются функциями времени, а взвешенный орграф называется функциональным.

Исследование реакции орграфа на возмущения. Существует методика исследования и оптимизации систем только по их знаковым орграфам. Но мы в дальнейшем будем использовать взвешенные орграфы, считая, что на текущий момент времени и в ближайший рассматриваемый период структура системы неизменна и весовые коэффициенты постоянны. После этого структура может измениться – могут появиться или пропасть связи, измениться их веса; на новый период времени придется строить новую модель.

Статистический метод оценки весовых коэффициентов. Как показывает практика, достаточно достоверный результат дает статистическая оценка связи между факторами. Для того, чтобы ей воспользоваться, требуется собрать статистику – ряд парных значений вершин для различных состояний моделируемой системы.

Вычисление реакции орграфа при помощи компьютера

Вычисления реакции орграфа на начальный импульс удобно проводить в программе Excel. Проиллюстрируем процесс на примере уже рассмотренного выше взвешенного орграфа. (Заметим, что предлагаемая последовательность действий отнюдь не является единственно возможной.)

Устойчивость и полная реакция орграфа

Особенностью рассматриваемых нами систем, управляемых человеком, является их стабильность (устойчивость). При этом значения вершин должны стремиться к какому-то конечному пределу при увеличении числа шагов. Этот предел и показывает полную реакцию системы на одноразовый начальный импульс: . Можно считать, что эта реакция осуществляется за некоторый заданный период времени (например, за год или за 5 лет – в зависимости от рассматриваемой системы).

Метод парных сравнений с весами

Анализ системных весов факторов

Рассчитанные при помощи метода парных сравнений с весами системные веса факторов позволяют нам определить приоритеты развития исследуемой системы на настоящий момент. Именно, системный вес каждого фактора означает, что увеличение значения этого фактора на 1% влечет изменение (улучшение или ухудшение, согласно знаку веса) состояния всей системы на соответствующее число процентов. Таким образом, для оптимального управления системой следует направлять усилия на изменение параметров, имеющих наибольшие по абсолютной величине системные веса.