Математика. Примеры решения задач курсовой работы Математика. Примеры решения задач курсовой работы

ЭЛЕМЕНТЫ ТЕОРИИ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Дифференциальные уравнения занимают особое место в математике и имеют многочисленные приложения в большом спектре наук. Исследования природных процессов и изучение закономерностей общественных процессов приводят к построению математических моделей, основой которых являются дифференциальные уравнения.

В дифференциальных уравнениях неизвестная функция содержится вместе со своими производными. Основной задачей теории дифференциальных уравнений является изучение функций, представляющих собой решения этих уравнений.

В этой части излагаются элементы теории обыкновенных дифференциальных уравнений, когда неизвестные функции зависят от одной переменной. Теория дифференциальных уравнений, когда неизвестные функции зависят от нескольких переменных — уравнения в частных производных, является более сложной и представляет специальный раздел математики.

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА

Основные понятия

Базовые определения

Определение 1. Уравнение вида Площадь поверхности тела вращения. Определение: Площадью поверхности вращения кривой АВ вокруг данной оси называют предел, к которому стремятся площади поверхностей вращения ломаных, вписанных в кривую АВ, при стремлении к нулю наибольших из длин звеньев этих ломаных.

где х — независимая переменная, у и у' — соответственно неизвестная функция и ее производная, называется дифференциальным уравнением первого порядка.

Примеры дифференциальных уравнений первого порядка:

В случае когда из уравнения можно выразить у', оно имеет вид

Уравнение (9.1) называется уравнением первого порядка, разрешенным относительно производной. В дальнейшем будем рассматривать уравнения первого порядка именно такого вида. Примеры уравнений, разрешенных относительно производной:

Приведем примеры уравнений, которые можно разрешить относительно производной неизвестной функции у'.

Пример 1. (y')2 = x2 + у2, откуда получаем два уравнения первого порядка у' = ±.

Определение 2. Решением дифференциального уравнения первого порядка называется функция у = φ(x), определенная на некотором интервале (а, b), которая при подстановке в уравнение обращает его в тождество.

Например, функция у = х2 тождественно обращает в нуль левую часть уравнения ху' — 2х2 = 0 и потому представляет собой решение этого уравнения.

В теории дифференциальных уравнений основной задачей является вопрос о существовании и единственности решения. Ответ на него дает теорема Коши, которую мы приводим без доказательства.

ТЕОРЕМА 1. Пусть дано дифференциальное уравнение (9.1). Если функция f(x,y) и ее частная производная f'y(x,y) непрерывны в некоторой области D плоскости Оху, то в некоторой окрестности любой внутренней точки (x0, у0) этой области существует единственное решение уравнения (9.1), удовлетворяющее условию у = у0 при х = x0.

График решения дифференциального уравнения называется интегральной кривой. В области D содержится бесконечно много интегральных кривых. Теорема Коши гарантирует, что при соблюдении определенных условий через каждую внутреннюю точку области D проходит только одна интегральная кривая. Условия, которые задают значение функции у0 в фиксированной точке x0, называют начальными условиями (условиями Коши) и записывают в такой форме:

Задача нахождения решения уравнения (9.1), удовлетворяющего условию (9.2), называется задачей Коши — из множества интегральных кривых выделяется та, которая проходит через заданную точку (x0, y0) области D.

В ряде случаев, когда условия теоремы Коши не выполнены, через некоторые точки плоскости Оху либо не проходит ни одной интегральной кривой, либо проходит более одной интегральной кривой; эти точки называются особыми точками данного дифференциального уравнения.

Определение 3. Общим решением уравнения (9.1) называется функция у = φ(x, С), удовлетворяющая этому уравнению при произвольном значении постоянной С.

Определение 4. Частным решением уравнения (9.1) в области D называется функция у = φ(х,С0), полученная при определенном значении постоянной С = С0.

Общее решение у = φ(x, С) описывает семейство интегральных кривых на плоскости Оху. Условия Коши (9.2) фиксируют произвольную постоянную С и позволяют выбрать из семейства интегральных кривых уравнения (9.1) одну интегральную кривую у = φ(x,C0), проходящую через заданную точку (x0, y0).

Например, рассмотрим уравнение у' = 2х. Правая часть этого уравнения удовлетворяет условиям теоремы Коши во всех точках плоскости Оху (функции f(x, у) = 2х и f'y(x, у)  0 определены и непрерывны на всей плоскости Оху). Нетрудно видеть, что общим решением уравнения является функция у = х2 + С, где С — произвольная постоянная, описывающая семейство парабол (рис. 9.1). Для отыскания частного решения зададим произвольные начальные условия (9.2) и подставим их в формулу общего решения; получаем, что С = у0 — x02, откуда находим частное решение у = х2 + у0 – х02. Это частное решение выделяет из семейства парабол одну, проходящую через точку (х0, у0).

Геометрический смысл уравнения первого порядка

Рассмотрим уравнение у' = f(x,y). Пусть у = φ(x) — его решение, график которого представляет собой непрерывную интегральную кривую, причем в каждой ее точке существует касательная. Из дифференциального уравнения следует, что угловой коэффициент касательной к интегральной кривой в каждой ее точке равен правой части этого уравнения. Следовательно, уравнение первого порядка задает угловой коэффициент у' касательной к интегральной кривой как функцию двух переменных. Если каждой точке (x, у) сопоставить отрезок, направленный под углом наклона α = arctg (f (x, y)) к оси Ох, то мы получим поле направлений данного уравнения. В этом и заключается геометрический смысл дифференциального уравнения первого порядка.

Поле направлений позволяет проанализировать решение дифференциального уравнения и даже приближенно построить интегральные кривые.

Пример 1. Построить поле направлений уравнения y' = x2 - y.

Решение. Нетрудно видеть, что правая часть этого уравнения удовлетворяет условиям теоремы Коши единственности и существования решения при любых x и у, т.е. интегральные кривые заполняют всю плоскость Оху. Найдем линии, на которых наклон направлений одинаков, — так называемые изоклины. Так, если у' = 0, то имеем x2 - у = 0, т.е. на параболе у = x2 касательные к интегральным кривым горизонтальны (короткие черточки на рис. 9.2). При у' = 1 имеем х2 — у = 1, т.е. касательные к интегральным кривым направлены под углом 45° к оси Ох на параболе у = х2 - 1. Наконец, на параболе у = x2 + 1 угол наклона касательных равен 135°. По полю направлений можно приближенно восстановить ход интегральных кривых (сплошные линии).

9.2. Уравнения с разделяющимися переменными

Определение 5. Дифференциальное уравнение вида

где f1(x) и f2(y) — непрерывные функции, называется уравнением с разделяющимися переменными.

Подчеркнем, что правая часть уравнения представляет собой произведение, в котором один сомножитель зависит только от х, а другой — только от у. Метод решения такого вида уравнений носит название разделения переменных. Запишем производную у' в ее эквивалентной форме как отношение дифференциала функции к дифференциалу независимой переменной , умножим обе части уравнения (9.3) на dx и поделим обе его части на f2(y), полагая, что f2(у) ≠ 0; получаем

В этом уравнении переменная у входит в левую часть, а переменная х — только в правую, т.е. переменные разделены. Пусть у = φ(x) является решением уравнения (9.3), тогда при подстановке этого решения в уравнение (9.4) получаем тождество: два дифференциала равны друг другу, только в правой части дифференциал выражен через независимую переменную x, а в левой части — через функцию у. Поскольку дифференциалы равны, то их неопределенные интегралы различаются на постоянную величину, т.е., интегрируя слева по переменной у, а справа по переменной х, получаем

где С — произвольная постоянная.

Рассмотрим примеры решения уравнений методом разделения переменных.

Пример 1. ху' — у = 0, найти частное решение при начальных условиях у0 = 2 при x0 = -4.

Решение. Разделим переменные, для чего перенесем у в правую часть, поделим обе части полученного уравнения на ху и умножим их на dx; получим

Интегрируя обе части этого уравнения (правую по x, а левую по у), имеем

где С — произвольная постоянная. При потенцировании получаем

что эквивалентно уравнению у = ±Сх, или у = С1х. Полученная функция представляет семейство интегральных кривых. Для выделения частного решения при указанных начальных условиях подставим в эту формулу х = -4 и у = 2, откуда получим значение для С: С = -1/2. Окончательно частное решение имеет вид

Пример 2. у' = х, найти частное решение, проходящее через точку (0,1).

Решение. Разделяя переменные, получаем уравнение в дифференциалах

Интегрируя, имеем

где С — произвольная постоянная величина. После интегрирования (интеграл в правой части берется при помощи замены переменной) имеем уравнение семейства интегральных кривых

Выделение частного решения, проходящего через точку (0, 1), приводит к определению произвольной постоянной: С =, т.е. эта кривая описывается уравнением (с учетом выбора знака)

9.3. Неполные уравнения

Определение 6. Дифференциальное уравнение первого порядка (9.1) называется неполным, если функция f явно зависит только от одной переменной: либо от х, либо от у.

Различают два случая такой зависимости.

1. Пусть функция f зависит только от х. Переписав это уравнение в виде

нетрудно убедиться, что его решением является функция

2. Пусть функция f зависит только от у, т.е. уравнение (9.1) имеет вид

Дифференциальное уравнение такого вида называется автономным. Такие уравнения часто употребимы в практике математического моделирования и исследования природных и физических процессов, когда, например, независимая переменная х играет роль времени, не входящего в соотношения, описывающие законы природы. В этом случае особый интерес представляют так называемые точки равновесия, или стационарные точки,— нули функции f(у), где производная у' = 0.

Решение уравнения (9.6) методом разделения переменных приводит к функциональному уравнению для определения неизвестной функции у = φ(x) (или х = ψ(у)):

В общей теории дифференциальных уравнений развита теория качественного анализа, основанная на исследовании характера стационарных точек.

9.4. Линейные уравнения первого порядка

Определение 7. Уравнение вида

где р(х) и q(x) — непрерывные функции, называется линейным дифференциальным уравнением первого порядка.

Неизвестная функция и ее производная входят в указанное уравнение в первой степени — линейно, что и объясняет название уравнения.

Если q(x)  0, то уравнение (9.7) называется линейным однородным уравнением; если же функция q(x) не равна тождественно нулю, то уравнение (9.7) называется линейным неоднородным уравнением.

Для линейного уравнения первого порядка можно выписать общее решение с помощью метода вариации постоянной. Здесь это решение приводится без вывода:

Следует отметить, что некоторые нелинейные уравнения приводятся к линейным уравнениям соответствующими заменами неизвестной функции у(х). К таковым относится уравнение Бернулли

где р и q — непрерывные функции, a n — некоторое постоянное число. При п = 0 имеем линейное неоднородное уравнение, а при n = 1 — линейное однородное уравнение

Пусть п ≠ 0, n ≠ 1. Введем новую функцию

тогда

Поделим обе части уравнения (9.9) на уn:

Умножая обе части этого уравнения на (1 — n), с учетом выражений для новой функции z и ее производной получаем линейное дифференциальное неоднородное уравнение относительно неизвестной функции z(x):

В этом уравнении, метод решения которого нам известен, функция z(x) связана с искомой функцией у(x) соотношением (9.10).

Рассмотрим примеры решения неоднородных уравнений первого порядка.

Решение. Это линейное неоднородное уравнение первого порядка. Последовательное интегрирование в формуле (9.8) при р(х) = x2 и q(x) = х2 дает

(этот интеграл берется с помощью подстановки t = х3 в формулу (9.8)). Получаем решение дифференциального уравнения:

Решение. Тот же прием, что и в предыдущем примере, при р(х) = 1/х и q(x) = eх дает нам решение


Решение. Данное нелинейное уравнение представляет собой уравнение Бернулли при п = 3. Заменой искомой функции z = у-2, согласно (9.10) и (9.11), получим линейное неоднородное уравнение относительно z(х)

По формуле (9.8) получаем общее решение этого уравнения:

Теперь, выполняя обратную замену у = ±1/, получаем решение исходного нелинейного уравнения:

УПРАЖНЕНИЯ

Найти общие решения дифференциальных уравнений методом разделения переменных.

Найти частные решения уравнений первого порядка, удовлетворяющие указанным начальным условиям.

Найти общее решение линейных уравнений.

Решить уравнения Бернулли.